Loading…

The Detectable Subspace for the Friedrichs Model

This paper discusses how much information on a Friedrichs model operator can be detected from ‘measurements on the boundary’. We use the framework of boundary triples to introduce the generalised Titchmarsh–Weyl M -function and the detectable subspaces which are associated with the part of the opera...

Full description

Saved in:
Bibliographic Details
Published in:Integral equations and operator theory 2019-10, Vol.91 (5), p.1-26, Article 49
Main Authors: Brown, B. M., Marletta, M., Naboko, S., Wood, I. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-12887b5c1b394130c6e38abda346a178bee97eaf592b723d4756964af3a96ee03
cites cdi_FETCH-LOGICAL-c359t-12887b5c1b394130c6e38abda346a178bee97eaf592b723d4756964af3a96ee03
container_end_page 26
container_issue 5
container_start_page 1
container_title Integral equations and operator theory
container_volume 91
creator Brown, B. M.
Marletta, M.
Naboko, S.
Wood, I. G.
description This paper discusses how much information on a Friedrichs model operator can be detected from ‘measurements on the boundary’. We use the framework of boundary triples to introduce the generalised Titchmarsh–Weyl M -function and the detectable subspaces which are associated with the part of the operator which is ‘accessible from boundary measurements’. The Friedrichs model, a finite rank perturbation of the operator of multiplication by the independent variable, is a toy model that is used frequently in the study of perturbation problems. We view the Friedrichs model as a key example for the development of the theory of detectable subspaces, because it is sufficiently simple to allow a precise description of the structure of the detectable subspace in many cases, while still exhibiting a variety of behaviours. The results also demonstrate an interesting interplay between modern complex analysis, such as the theory of Hankel operators, and operator theory.
doi_str_mv 10.1007/s00020-019-2548-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2303234840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2303234840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-12887b5c1b394130c6e38abda346a178bee97eaf592b723d4756964af3a96ee03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-jkY_NxlGpVqHiwgreQZGdtS-3WZPfgvzdlBU-eBmae9x14CLlkcM0A9E0GAA4UmKW8lobaIzJhsmyMNfaYTEBoQxWH91NylvOmwFxzNSGwXGF1hz3G3octVq9DyHsfsWq7VPXlNk9rbNI6rnL13DW4PScnrd9mvPidU_I2v1_OHuni5eFpdrugUdS2p4wbo0MdWRBWMgFRoTA-NF5I5Zk2AdFq9G1tedBcNFLXyirpW-GtQgQxJVdj7z51XwPm3m26Ie3KS8cFCC6kkQeKjVRMXc4JW7dP60-fvh0DdxDjRjGuiHEHMc6WDB8zubC7D0x_zf-HfgAo_GOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303234840</pqid></control><display><type>article</type><title>The Detectable Subspace for the Friedrichs Model</title><source>Springer Link</source><creator>Brown, B. M. ; Marletta, M. ; Naboko, S. ; Wood, I. G.</creator><creatorcontrib>Brown, B. M. ; Marletta, M. ; Naboko, S. ; Wood, I. G.</creatorcontrib><description>This paper discusses how much information on a Friedrichs model operator can be detected from ‘measurements on the boundary’. We use the framework of boundary triples to introduce the generalised Titchmarsh–Weyl M -function and the detectable subspaces which are associated with the part of the operator which is ‘accessible from boundary measurements’. The Friedrichs model, a finite rank perturbation of the operator of multiplication by the independent variable, is a toy model that is used frequently in the study of perturbation problems. We view the Friedrichs model as a key example for the development of the theory of detectable subspaces, because it is sufficiently simple to allow a precise description of the structure of the detectable subspace in many cases, while still exhibiting a variety of behaviours. The results also demonstrate an interesting interplay between modern complex analysis, such as the theory of Hankel operators, and operator theory.</description><identifier>ISSN: 0378-620X</identifier><identifier>EISSN: 1420-8989</identifier><identifier>DOI: 10.1007/s00020-019-2548-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Independent variables ; Mathematics ; Mathematics and Statistics ; Multiplication ; Perturbation methods ; Subspaces</subject><ispartof>Integral equations and operator theory, 2019-10, Vol.91 (5), p.1-26, Article 49</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-12887b5c1b394130c6e38abda346a178bee97eaf592b723d4756964af3a96ee03</citedby><cites>FETCH-LOGICAL-c359t-12887b5c1b394130c6e38abda346a178bee97eaf592b723d4756964af3a96ee03</cites><orcidid>0000-0001-7181-7075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Brown, B. M.</creatorcontrib><creatorcontrib>Marletta, M.</creatorcontrib><creatorcontrib>Naboko, S.</creatorcontrib><creatorcontrib>Wood, I. G.</creatorcontrib><title>The Detectable Subspace for the Friedrichs Model</title><title>Integral equations and operator theory</title><addtitle>Integr. Equ. Oper. Theory</addtitle><description>This paper discusses how much information on a Friedrichs model operator can be detected from ‘measurements on the boundary’. We use the framework of boundary triples to introduce the generalised Titchmarsh–Weyl M -function and the detectable subspaces which are associated with the part of the operator which is ‘accessible from boundary measurements’. The Friedrichs model, a finite rank perturbation of the operator of multiplication by the independent variable, is a toy model that is used frequently in the study of perturbation problems. We view the Friedrichs model as a key example for the development of the theory of detectable subspaces, because it is sufficiently simple to allow a precise description of the structure of the detectable subspace in many cases, while still exhibiting a variety of behaviours. The results also demonstrate an interesting interplay between modern complex analysis, such as the theory of Hankel operators, and operator theory.</description><subject>Analysis</subject><subject>Independent variables</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiplication</subject><subject>Perturbation methods</subject><subject>Subspaces</subject><issn>0378-620X</issn><issn>1420-8989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-jkY_NxlGpVqHiwgreQZGdtS-3WZPfgvzdlBU-eBmae9x14CLlkcM0A9E0GAA4UmKW8lobaIzJhsmyMNfaYTEBoQxWH91NylvOmwFxzNSGwXGF1hz3G3octVq9DyHsfsWq7VPXlNk9rbNI6rnL13DW4PScnrd9mvPidU_I2v1_OHuni5eFpdrugUdS2p4wbo0MdWRBWMgFRoTA-NF5I5Zk2AdFq9G1tedBcNFLXyirpW-GtQgQxJVdj7z51XwPm3m26Ie3KS8cFCC6kkQeKjVRMXc4JW7dP60-fvh0DdxDjRjGuiHEHMc6WDB8zubC7D0x_zf-HfgAo_GOs</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Brown, B. M.</creator><creator>Marletta, M.</creator><creator>Naboko, S.</creator><creator>Wood, I. G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7181-7075</orcidid></search><sort><creationdate>20191001</creationdate><title>The Detectable Subspace for the Friedrichs Model</title><author>Brown, B. M. ; Marletta, M. ; Naboko, S. ; Wood, I. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-12887b5c1b394130c6e38abda346a178bee97eaf592b723d4756964af3a96ee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Independent variables</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiplication</topic><topic>Perturbation methods</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, B. M.</creatorcontrib><creatorcontrib>Marletta, M.</creatorcontrib><creatorcontrib>Naboko, S.</creatorcontrib><creatorcontrib>Wood, I. G.</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><jtitle>Integral equations and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, B. M.</au><au>Marletta, M.</au><au>Naboko, S.</au><au>Wood, I. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Detectable Subspace for the Friedrichs Model</atitle><jtitle>Integral equations and operator theory</jtitle><stitle>Integr. Equ. Oper. Theory</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>91</volume><issue>5</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>49</artnum><issn>0378-620X</issn><eissn>1420-8989</eissn><abstract>This paper discusses how much information on a Friedrichs model operator can be detected from ‘measurements on the boundary’. We use the framework of boundary triples to introduce the generalised Titchmarsh–Weyl M -function and the detectable subspaces which are associated with the part of the operator which is ‘accessible from boundary measurements’. The Friedrichs model, a finite rank perturbation of the operator of multiplication by the independent variable, is a toy model that is used frequently in the study of perturbation problems. We view the Friedrichs model as a key example for the development of the theory of detectable subspaces, because it is sufficiently simple to allow a precise description of the structure of the detectable subspace in many cases, while still exhibiting a variety of behaviours. The results also demonstrate an interesting interplay between modern complex analysis, such as the theory of Hankel operators, and operator theory.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00020-019-2548-9</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-7181-7075</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-620X
ispartof Integral equations and operator theory, 2019-10, Vol.91 (5), p.1-26, Article 49
issn 0378-620X
1420-8989
language eng
recordid cdi_proquest_journals_2303234840
source Springer Link
subjects Analysis
Independent variables
Mathematics
Mathematics and Statistics
Multiplication
Perturbation methods
Subspaces
title The Detectable Subspace for the Friedrichs Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Detectable%20Subspace%20for%20the%20Friedrichs%20Model&rft.jtitle=Integral%20equations%20and%20operator%20theory&rft.au=Brown,%20B.%20M.&rft.date=2019-10-01&rft.volume=91&rft.issue=5&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=49&rft.issn=0378-620X&rft.eissn=1420-8989&rft_id=info:doi/10.1007/s00020-019-2548-9&rft_dat=%3Cproquest_cross%3E2303234840%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-12887b5c1b394130c6e38abda346a178bee97eaf592b723d4756964af3a96ee03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2303234840&rft_id=info:pmid/&rfr_iscdi=true