Loading…

Ultra-thin van der Waals crystals as semiconductor quantum wells

Control over the electronic spectrum at low energy is at the heart of the functioning of modern advanced electronics: high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. Most of those devices rely on the meticulous engineering of the size quantization of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-10
Main Authors: Zultak, Johanna, Magorrian, Samuel, Koperski, Maciej, Garner, Alistair, Hamer, Matthew J, Tovari, Endre, Novoselov, Kostya S, Zhukov, Alexander, Zou, Yichao, Wilson, Neil R, Haigh, Sarah J, Kretinin, Andrey, Fal'ko, Vladimir I, Gorbachev, Roman
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zultak, Johanna
Magorrian, Samuel
Koperski, Maciej
Garner, Alistair
Hamer, Matthew J
Tovari, Endre
Novoselov, Kostya S
Zhukov, Alexander
Zou, Yichao
Wilson, Neil R
Haigh, Sarah J
Kretinin, Andrey
Fal'ko, Vladimir I
Gorbachev, Roman
description Control over the electronic spectrum at low energy is at the heart of the functioning of modern advanced electronics: high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. Most of those devices rely on the meticulous engineering of the size quantization of electrons in quantum wells. This avenue, however, hasn't been explored in the case of 2D materials. Here we transfer this concept onto the van der Waals heterostructures which utilize few-layers films of InSe as quantum wells. The precise control over the energy of the subbands and their uniformity guarantees extremely high quality of the electronic transport in such systems. Using novel tunnelling and light emitting devices, for the first time we reveal the full subbands structure by studying resonance features in the tunnelling current, photoabsorption and light emission. In the future, these systems will allow development of elementary blocks for atomically thin infrared and THz light sources based on intersubband optical transitions in few-layer films of van der Waals materials.
doi_str_mv 10.48550/arxiv.1910.04215
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2304014319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2304014319</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-c5152acad1ccafaed0d2a2a211ce25fb692db1a3081e9e631274aee99255ae143</originalsourceid><addsrcrecordid>eNotTk1LAzEUDIJgqf0B3gKet-a9JNvmphS_oOCl4rG8Jm9xy3bXJtmq_96IMocZhmFmhLgCNTdLa9UNxa_2NAdXDGUQ7JmYoNZQLQ3ihZiltFdKYb1Aa_VE3L52OVKV39tenqiXgaN8I-qS9PE75V9BSSY-tH7ow-jzEOVxpD6PB_nJXZcuxXlTUjz756nYPNxvVk_V-uXxeXW3rsiiq7wFi-QpgPfUEAcVkAoAPKNtdrXDsAPSagnsuNaAC0PMzpWXxGD0VFz_1X7E4Thyytv9MMa-LG5RK6NKBJz-AdcxS6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2304014319</pqid></control><display><type>article</type><title>Ultra-thin van der Waals crystals as semiconductor quantum wells</title><source>Publicly Available Content (ProQuest)</source><creator>Zultak, Johanna ; Magorrian, Samuel ; Koperski, Maciej ; Garner, Alistair ; Hamer, Matthew J ; Tovari, Endre ; Novoselov, Kostya S ; Zhukov, Alexander ; Zou, Yichao ; Wilson, Neil R ; Haigh, Sarah J ; Kretinin, Andrey ; Fal'ko, Vladimir I ; Gorbachev, Roman</creator><creatorcontrib>Zultak, Johanna ; Magorrian, Samuel ; Koperski, Maciej ; Garner, Alistair ; Hamer, Matthew J ; Tovari, Endre ; Novoselov, Kostya S ; Zhukov, Alexander ; Zou, Yichao ; Wilson, Neil R ; Haigh, Sarah J ; Kretinin, Andrey ; Fal'ko, Vladimir I ; Gorbachev, Roman</creatorcontrib><description>Control over the electronic spectrum at low energy is at the heart of the functioning of modern advanced electronics: high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. Most of those devices rely on the meticulous engineering of the size quantization of electrons in quantum wells. This avenue, however, hasn't been explored in the case of 2D materials. Here we transfer this concept onto the van der Waals heterostructures which utilize few-layers films of InSe as quantum wells. The precise control over the energy of the subbands and their uniformity guarantees extremely high quality of the electronic transport in such systems. Using novel tunnelling and light emitting devices, for the first time we reveal the full subbands structure by studying resonance features in the tunnelling current, photoabsorption and light emission. In the future, these systems will allow development of elementary blocks for atomically thin infrared and THz light sources based on intersubband optical transitions in few-layer films of van der Waals materials.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1910.04215</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Electron mobility ; Electron transport ; Emission analysis ; Heterostructures ; High electron mobility transistors ; Infrared radiation ; Light emission ; Light sources ; Photoabsorption ; Quantum wells ; Semiconductor devices ; Two dimensional materials</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2304014319?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zultak, Johanna</creatorcontrib><creatorcontrib>Magorrian, Samuel</creatorcontrib><creatorcontrib>Koperski, Maciej</creatorcontrib><creatorcontrib>Garner, Alistair</creatorcontrib><creatorcontrib>Hamer, Matthew J</creatorcontrib><creatorcontrib>Tovari, Endre</creatorcontrib><creatorcontrib>Novoselov, Kostya S</creatorcontrib><creatorcontrib>Zhukov, Alexander</creatorcontrib><creatorcontrib>Zou, Yichao</creatorcontrib><creatorcontrib>Wilson, Neil R</creatorcontrib><creatorcontrib>Haigh, Sarah J</creatorcontrib><creatorcontrib>Kretinin, Andrey</creatorcontrib><creatorcontrib>Fal'ko, Vladimir I</creatorcontrib><creatorcontrib>Gorbachev, Roman</creatorcontrib><title>Ultra-thin van der Waals crystals as semiconductor quantum wells</title><title>arXiv.org</title><description>Control over the electronic spectrum at low energy is at the heart of the functioning of modern advanced electronics: high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. Most of those devices rely on the meticulous engineering of the size quantization of electrons in quantum wells. This avenue, however, hasn't been explored in the case of 2D materials. Here we transfer this concept onto the van der Waals heterostructures which utilize few-layers films of InSe as quantum wells. The precise control over the energy of the subbands and their uniformity guarantees extremely high quality of the electronic transport in such systems. Using novel tunnelling and light emitting devices, for the first time we reveal the full subbands structure by studying resonance features in the tunnelling current, photoabsorption and light emission. In the future, these systems will allow development of elementary blocks for atomically thin infrared and THz light sources based on intersubband optical transitions in few-layer films of van der Waals materials.</description><subject>Electron mobility</subject><subject>Electron transport</subject><subject>Emission analysis</subject><subject>Heterostructures</subject><subject>High electron mobility transistors</subject><subject>Infrared radiation</subject><subject>Light emission</subject><subject>Light sources</subject><subject>Photoabsorption</subject><subject>Quantum wells</subject><subject>Semiconductor devices</subject><subject>Two dimensional materials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotTk1LAzEUDIJgqf0B3gKet-a9JNvmphS_oOCl4rG8Jm9xy3bXJtmq_96IMocZhmFmhLgCNTdLa9UNxa_2NAdXDGUQ7JmYoNZQLQ3ihZiltFdKYb1Aa_VE3L52OVKV39tenqiXgaN8I-qS9PE75V9BSSY-tH7ow-jzEOVxpD6PB_nJXZcuxXlTUjz756nYPNxvVk_V-uXxeXW3rsiiq7wFi-QpgPfUEAcVkAoAPKNtdrXDsAPSagnsuNaAC0PMzpWXxGD0VFz_1X7E4Thyytv9MMa-LG5RK6NKBJz-AdcxS6U</recordid><startdate>20191031</startdate><enddate>20191031</enddate><creator>Zultak, Johanna</creator><creator>Magorrian, Samuel</creator><creator>Koperski, Maciej</creator><creator>Garner, Alistair</creator><creator>Hamer, Matthew J</creator><creator>Tovari, Endre</creator><creator>Novoselov, Kostya S</creator><creator>Zhukov, Alexander</creator><creator>Zou, Yichao</creator><creator>Wilson, Neil R</creator><creator>Haigh, Sarah J</creator><creator>Kretinin, Andrey</creator><creator>Fal'ko, Vladimir I</creator><creator>Gorbachev, Roman</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191031</creationdate><title>Ultra-thin van der Waals crystals as semiconductor quantum wells</title><author>Zultak, Johanna ; Magorrian, Samuel ; Koperski, Maciej ; Garner, Alistair ; Hamer, Matthew J ; Tovari, Endre ; Novoselov, Kostya S ; Zhukov, Alexander ; Zou, Yichao ; Wilson, Neil R ; Haigh, Sarah J ; Kretinin, Andrey ; Fal'ko, Vladimir I ; Gorbachev, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-c5152acad1ccafaed0d2a2a211ce25fb692db1a3081e9e631274aee99255ae143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Electron mobility</topic><topic>Electron transport</topic><topic>Emission analysis</topic><topic>Heterostructures</topic><topic>High electron mobility transistors</topic><topic>Infrared radiation</topic><topic>Light emission</topic><topic>Light sources</topic><topic>Photoabsorption</topic><topic>Quantum wells</topic><topic>Semiconductor devices</topic><topic>Two dimensional materials</topic><toplevel>online_resources</toplevel><creatorcontrib>Zultak, Johanna</creatorcontrib><creatorcontrib>Magorrian, Samuel</creatorcontrib><creatorcontrib>Koperski, Maciej</creatorcontrib><creatorcontrib>Garner, Alistair</creatorcontrib><creatorcontrib>Hamer, Matthew J</creatorcontrib><creatorcontrib>Tovari, Endre</creatorcontrib><creatorcontrib>Novoselov, Kostya S</creatorcontrib><creatorcontrib>Zhukov, Alexander</creatorcontrib><creatorcontrib>Zou, Yichao</creatorcontrib><creatorcontrib>Wilson, Neil R</creatorcontrib><creatorcontrib>Haigh, Sarah J</creatorcontrib><creatorcontrib>Kretinin, Andrey</creatorcontrib><creatorcontrib>Fal'ko, Vladimir I</creatorcontrib><creatorcontrib>Gorbachev, Roman</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zultak, Johanna</au><au>Magorrian, Samuel</au><au>Koperski, Maciej</au><au>Garner, Alistair</au><au>Hamer, Matthew J</au><au>Tovari, Endre</au><au>Novoselov, Kostya S</au><au>Zhukov, Alexander</au><au>Zou, Yichao</au><au>Wilson, Neil R</au><au>Haigh, Sarah J</au><au>Kretinin, Andrey</au><au>Fal'ko, Vladimir I</au><au>Gorbachev, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-thin van der Waals crystals as semiconductor quantum wells</atitle><jtitle>arXiv.org</jtitle><date>2019-10-31</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Control over the electronic spectrum at low energy is at the heart of the functioning of modern advanced electronics: high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. Most of those devices rely on the meticulous engineering of the size quantization of electrons in quantum wells. This avenue, however, hasn't been explored in the case of 2D materials. Here we transfer this concept onto the van der Waals heterostructures which utilize few-layers films of InSe as quantum wells. The precise control over the energy of the subbands and their uniformity guarantees extremely high quality of the electronic transport in such systems. Using novel tunnelling and light emitting devices, for the first time we reveal the full subbands structure by studying resonance features in the tunnelling current, photoabsorption and light emission. In the future, these systems will allow development of elementary blocks for atomically thin infrared and THz light sources based on intersubband optical transitions in few-layer films of van der Waals materials.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1910.04215</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2304014319
source Publicly Available Content (ProQuest)
subjects Electron mobility
Electron transport
Emission analysis
Heterostructures
High electron mobility transistors
Infrared radiation
Light emission
Light sources
Photoabsorption
Quantum wells
Semiconductor devices
Two dimensional materials
title Ultra-thin van der Waals crystals as semiconductor quantum wells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-thin%20van%20der%20Waals%20crystals%20as%20semiconductor%20quantum%20wells&rft.jtitle=arXiv.org&rft.au=Zultak,%20Johanna&rft.date=2019-10-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1910.04215&rft_dat=%3Cproquest%3E2304014319%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-c5152acad1ccafaed0d2a2a211ce25fb692db1a3081e9e631274aee99255ae143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2304014319&rft_id=info:pmid/&rfr_iscdi=true