Loading…

Global renewable energy development: Influencing factors, trend predictions and countermeasures

Promoting the development and utilisation of renewable energy is the current trend of energy policy in various regions. First, we divide the world into seven regions based on the Engineering News-Record (ENR) regional classification—Asia-Pacific, Middle East, Canada, the United States, Latin America...

Full description

Saved in:
Bibliographic Details
Published in:Resources policy 2019-10, Vol.63, p.101470, Article 101470
Main Authors: Xu, Xiaofeng, Wei, Zhifei, Ji, Qiang, Wang, Chenglong, Gao, Guowei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-b90a9f3cfa62ddb3fd1125afdeeb040102951b51c0b94cfee4cafeb57849bae33
cites cdi_FETCH-LOGICAL-c376t-b90a9f3cfa62ddb3fd1125afdeeb040102951b51c0b94cfee4cafeb57849bae33
container_end_page
container_issue
container_start_page 101470
container_title Resources policy
container_volume 63
creator Xu, Xiaofeng
Wei, Zhifei
Ji, Qiang
Wang, Chenglong
Gao, Guowei
description Promoting the development and utilisation of renewable energy is the current trend of energy policy in various regions. First, we divide the world into seven regions based on the Engineering News-Record (ENR) regional classification—Asia-Pacific, Middle East, Canada, the United States, Latin America, Europe and Africa—and analyse the status of renewable energy from political, technical, economic and social perspectives. Second, an integration forecasting model is proposed, which includes differential autoregressive integrated moving average model (ARIMA), neural network model (NNM), support vector machine model (SVM), and predicts the development prospects of renewable resources by one-way regression in various regions. Finally, corresponding countermeasures are proposed for these seven regions. •The worldwide status of renewable energy is studied from political, technical, economic and social perspectives.•An integration forecasting model is proposed combining ARIMA, NNM with SVM.•The development prospects of renewable resources by one-way regression is predicted in various regions.•Corresponding countermeasures are proposed for the global seven regions.
doi_str_mv 10.1016/j.resourpol.2019.101470
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2304109602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301420719303174</els_id><sourcerecordid>2304109602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-b90a9f3cfa62ddb3fd1125afdeeb040102951b51c0b94cfee4cafeb57849bae33</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwG6jElQ6nSduV2zTBmDSJC5yjJHWmVl1TknRo_55MRVw5-UN-bb8PIfcUFhRo8dQuHHo7usF2iwxode7yEi7IjC5LlpYFp5dkBgxoyjMor8mN9y0A5OWymBGx6aySXeKwx2-pOkxi4vanpMYjdnY4YB-ek21vuhF73fT7xEgdrPOPSYiaOhkc1o0Oje19ImOt7dgHdAeUfoyP3ZIrIzuPd79xTj5fXz7Wb-nufbNdr3apZmURUlWBrAzTRhZZXStmakqzXJoaUQEHClmVU5VTDari2iByLQ2q6IFXSiJjc_Iw7R2c_RrRB9FGJn08KTIGnEJVQBanymlKO-u9QyMG1xykOwkK4kxTtOKPpjjTFBPNqFxNSowmjg064XUTiUTzDnUQtW3-3fEDT7SFiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2304109602</pqid></control><display><type>article</type><title>Global renewable energy development: Influencing factors, trend predictions and countermeasures</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Journals</source><source>PAIS Index</source><creator>Xu, Xiaofeng ; Wei, Zhifei ; Ji, Qiang ; Wang, Chenglong ; Gao, Guowei</creator><creatorcontrib>Xu, Xiaofeng ; Wei, Zhifei ; Ji, Qiang ; Wang, Chenglong ; Gao, Guowei</creatorcontrib><description>Promoting the development and utilisation of renewable energy is the current trend of energy policy in various regions. First, we divide the world into seven regions based on the Engineering News-Record (ENR) regional classification—Asia-Pacific, Middle East, Canada, the United States, Latin America, Europe and Africa—and analyse the status of renewable energy from political, technical, economic and social perspectives. Second, an integration forecasting model is proposed, which includes differential autoregressive integrated moving average model (ARIMA), neural network model (NNM), support vector machine model (SVM), and predicts the development prospects of renewable resources by one-way regression in various regions. Finally, corresponding countermeasures are proposed for these seven regions. •The worldwide status of renewable energy is studied from political, technical, economic and social perspectives.•An integration forecasting model is proposed combining ARIMA, NNM with SVM.•The development prospects of renewable resources by one-way regression is predicted in various regions.•Corresponding countermeasures are proposed for the global seven regions.</description><identifier>ISSN: 0301-4207</identifier><identifier>EISSN: 1873-7641</identifier><identifier>DOI: 10.1016/j.resourpol.2019.101470</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Autoregressive models ; Classification ; Development countermeasure ; Economic analysis ; Economic forecasting ; Economic models ; Energy development ; Energy policy ; Forecasting ; Forecasting model ; Neural networks ; News ; Prospects ; Regression analysis ; Renewable energy ; Renewable resources ; Statistical analysis ; Support vector machines ; Trend analysis</subject><ispartof>Resources policy, 2019-10, Vol.63, p.101470, Article 101470</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-b90a9f3cfa62ddb3fd1125afdeeb040102951b51c0b94cfee4cafeb57849bae33</citedby><cites>FETCH-LOGICAL-c376t-b90a9f3cfa62ddb3fd1125afdeeb040102951b51c0b94cfee4cafeb57849bae33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27866,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Xu, Xiaofeng</creatorcontrib><creatorcontrib>Wei, Zhifei</creatorcontrib><creatorcontrib>Ji, Qiang</creatorcontrib><creatorcontrib>Wang, Chenglong</creatorcontrib><creatorcontrib>Gao, Guowei</creatorcontrib><title>Global renewable energy development: Influencing factors, trend predictions and countermeasures</title><title>Resources policy</title><description>Promoting the development and utilisation of renewable energy is the current trend of energy policy in various regions. First, we divide the world into seven regions based on the Engineering News-Record (ENR) regional classification—Asia-Pacific, Middle East, Canada, the United States, Latin America, Europe and Africa—and analyse the status of renewable energy from political, technical, economic and social perspectives. Second, an integration forecasting model is proposed, which includes differential autoregressive integrated moving average model (ARIMA), neural network model (NNM), support vector machine model (SVM), and predicts the development prospects of renewable resources by one-way regression in various regions. Finally, corresponding countermeasures are proposed for these seven regions. •The worldwide status of renewable energy is studied from political, technical, economic and social perspectives.•An integration forecasting model is proposed combining ARIMA, NNM with SVM.•The development prospects of renewable resources by one-way regression is predicted in various regions.•Corresponding countermeasures are proposed for the global seven regions.</description><subject>Autoregressive models</subject><subject>Classification</subject><subject>Development countermeasure</subject><subject>Economic analysis</subject><subject>Economic forecasting</subject><subject>Economic models</subject><subject>Energy development</subject><subject>Energy policy</subject><subject>Forecasting</subject><subject>Forecasting model</subject><subject>Neural networks</subject><subject>News</subject><subject>Prospects</subject><subject>Regression analysis</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><subject>Trend analysis</subject><issn>0301-4207</issn><issn>1873-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8BJ</sourceid><recordid>eNqFkE1PwzAMhiMEEmPwG6jElQ6nSduV2zTBmDSJC5yjJHWmVl1TknRo_55MRVw5-UN-bb8PIfcUFhRo8dQuHHo7usF2iwxode7yEi7IjC5LlpYFp5dkBgxoyjMor8mN9y0A5OWymBGx6aySXeKwx2-pOkxi4vanpMYjdnY4YB-ek21vuhF73fT7xEgdrPOPSYiaOhkc1o0Oje19ImOt7dgHdAeUfoyP3ZIrIzuPd79xTj5fXz7Wb-nufbNdr3apZmURUlWBrAzTRhZZXStmakqzXJoaUQEHClmVU5VTDari2iByLQ2q6IFXSiJjc_Iw7R2c_RrRB9FGJn08KTIGnEJVQBanymlKO-u9QyMG1xykOwkK4kxTtOKPpjjTFBPNqFxNSowmjg064XUTiUTzDnUQtW3-3fEDT7SFiA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Xu, Xiaofeng</creator><creator>Wei, Zhifei</creator><creator>Ji, Qiang</creator><creator>Wang, Chenglong</creator><creator>Gao, Guowei</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>JG9</scope></search><sort><creationdate>201910</creationdate><title>Global renewable energy development: Influencing factors, trend predictions and countermeasures</title><author>Xu, Xiaofeng ; Wei, Zhifei ; Ji, Qiang ; Wang, Chenglong ; Gao, Guowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-b90a9f3cfa62ddb3fd1125afdeeb040102951b51c0b94cfee4cafeb57849bae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autoregressive models</topic><topic>Classification</topic><topic>Development countermeasure</topic><topic>Economic analysis</topic><topic>Economic forecasting</topic><topic>Economic models</topic><topic>Energy development</topic><topic>Energy policy</topic><topic>Forecasting</topic><topic>Forecasting model</topic><topic>Neural networks</topic><topic>News</topic><topic>Prospects</topic><topic>Regression analysis</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><topic>Trend analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaofeng</creatorcontrib><creatorcontrib>Wei, Zhifei</creatorcontrib><creatorcontrib>Ji, Qiang</creatorcontrib><creatorcontrib>Wang, Chenglong</creatorcontrib><creatorcontrib>Gao, Guowei</creatorcontrib><collection>CrossRef</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><jtitle>Resources policy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaofeng</au><au>Wei, Zhifei</au><au>Ji, Qiang</au><au>Wang, Chenglong</au><au>Gao, Guowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global renewable energy development: Influencing factors, trend predictions and countermeasures</atitle><jtitle>Resources policy</jtitle><date>2019-10</date><risdate>2019</risdate><volume>63</volume><spage>101470</spage><pages>101470-</pages><artnum>101470</artnum><issn>0301-4207</issn><eissn>1873-7641</eissn><abstract>Promoting the development and utilisation of renewable energy is the current trend of energy policy in various regions. First, we divide the world into seven regions based on the Engineering News-Record (ENR) regional classification—Asia-Pacific, Middle East, Canada, the United States, Latin America, Europe and Africa—and analyse the status of renewable energy from political, technical, economic and social perspectives. Second, an integration forecasting model is proposed, which includes differential autoregressive integrated moving average model (ARIMA), neural network model (NNM), support vector machine model (SVM), and predicts the development prospects of renewable resources by one-way regression in various regions. Finally, corresponding countermeasures are proposed for these seven regions. •The worldwide status of renewable energy is studied from political, technical, economic and social perspectives.•An integration forecasting model is proposed combining ARIMA, NNM with SVM.•The development prospects of renewable resources by one-way regression is predicted in various regions.•Corresponding countermeasures are proposed for the global seven regions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.resourpol.2019.101470</doi></addata></record>
fulltext fulltext
identifier ISSN: 0301-4207
ispartof Resources policy, 2019-10, Vol.63, p.101470, Article 101470
issn 0301-4207
1873-7641
language eng
recordid cdi_proquest_journals_2304109602
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Journals; PAIS Index
subjects Autoregressive models
Classification
Development countermeasure
Economic analysis
Economic forecasting
Economic models
Energy development
Energy policy
Forecasting
Forecasting model
Neural networks
News
Prospects
Regression analysis
Renewable energy
Renewable resources
Statistical analysis
Support vector machines
Trend analysis
title Global renewable energy development: Influencing factors, trend predictions and countermeasures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20renewable%20energy%20development:%20Influencing%20factors,%20trend%20predictions%20and%20countermeasures&rft.jtitle=Resources%20policy&rft.au=Xu,%20Xiaofeng&rft.date=2019-10&rft.volume=63&rft.spage=101470&rft.pages=101470-&rft.artnum=101470&rft.issn=0301-4207&rft.eissn=1873-7641&rft_id=info:doi/10.1016/j.resourpol.2019.101470&rft_dat=%3Cproquest_cross%3E2304109602%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-b90a9f3cfa62ddb3fd1125afdeeb040102951b51c0b94cfee4cafeb57849bae33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2304109602&rft_id=info:pmid/&rfr_iscdi=true