Loading…

A covariance matrix adaptation evolution strategy in reproducing kernel Hilbert space

The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient derivative-free optimization algorithm. It optimizes a black-box objective function over a well-defined parameter space in which feature functions are often defined manually. Therefore, the performance of those techniques s...

Full description

Saved in:
Bibliographic Details
Published in:Genetic programming and evolvable machines 2019-12, Vol.20 (4), p.479-501
Main Authors: Dang, Viet-Hung, Vien, Ngo Anh, Chung, TaeChoong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-b8ad9bde01507d90ba4903666a7cf2dc58c89f3f610084002db2209db2ff606a3
cites cdi_FETCH-LOGICAL-c363t-b8ad9bde01507d90ba4903666a7cf2dc58c89f3f610084002db2209db2ff606a3
container_end_page 501
container_issue 4
container_start_page 479
container_title Genetic programming and evolvable machines
container_volume 20
creator Dang, Viet-Hung
Vien, Ngo Anh
Chung, TaeChoong
description The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient derivative-free optimization algorithm. It optimizes a black-box objective function over a well-defined parameter space in which feature functions are often defined manually. Therefore, the performance of those techniques strongly depends on the quality of the chosen features or the underlying parametric function space. Hence, enabling CMA-ES to optimize on a more complex and general function class has long been desired. In this paper, we consider modeling the input spaces in black-box optimization non-parametrically in reproducing kernel Hilbert spaces (RKHS). This modeling leads to a functional optimisation problem whose domain is a RKHS function space that enables optimisation in a very rich function class. We propose CMA-ES-RKHS, a generalized CMA-ES framework that is able to carry out black-box functional optimisation in RKHS. A search distribution on non-parametric function spaces, represented as a Gaussian process, is adapted by updating both its mean function and covariance operator. Adaptive and sparse representation of the mean function and the covariance operator can be retained for efficient computation in the updates and evaluations of CMA-ES-RKHS by resorting to sparsification. We will also show how to apply our new black-box framework to search for an optimum policy in reinforcement learning in which policies are represented as functions in a RKHS. CMA-ES-RKHS is evaluated on two functional optimization problems and two bench-marking reinforcement learning domains.
doi_str_mv 10.1007/s10710-019-09357-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2305102278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305102278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b8ad9bde01507d90ba4903666a7cf2dc58c89f3f610084002db2209db2ff606a3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgsMRvOdm3HY1XxT6rEQmfLcZwqJU2C7VT022MaJDaWuxvee3f3Q-iWwj0FUA-RgqJAgGoCmgtF6BmaUaE4UZKz8zzzQhMmlLxEVzHuAKhkQs_QZoldf7ChsZ3zeG9TaL6wreyQbGr6DvtD346nKaZgk98ecdPh4IfQV6Nrui3-8KHzLX5p2tKHhONgnb9GF7Vto7_57XO0eXp8X72Q9dvz62q5Jo5LnkhZ2EqXlQcqQFUaSrvQwKWUVrmaVU4UrtA1r2X-sVgAsKpkDHSudS1BWj5Hd1NuPudz9DGZXT-GLq80jIOgwJgqsopNKhf6GIOvzRCavQ1HQ8H84DMTPpPxmRM-Q7OJT6aYxd3Wh7_of1zfhKNzYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305102278</pqid></control><display><type>article</type><title>A covariance matrix adaptation evolution strategy in reproducing kernel Hilbert space</title><source>Springer Link</source><creator>Dang, Viet-Hung ; Vien, Ngo Anh ; Chung, TaeChoong</creator><creatorcontrib>Dang, Viet-Hung ; Vien, Ngo Anh ; Chung, TaeChoong</creatorcontrib><description>The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient derivative-free optimization algorithm. It optimizes a black-box objective function over a well-defined parameter space in which feature functions are often defined manually. Therefore, the performance of those techniques strongly depends on the quality of the chosen features or the underlying parametric function space. Hence, enabling CMA-ES to optimize on a more complex and general function class has long been desired. In this paper, we consider modeling the input spaces in black-box optimization non-parametrically in reproducing kernel Hilbert spaces (RKHS). This modeling leads to a functional optimisation problem whose domain is a RKHS function space that enables optimisation in a very rich function class. We propose CMA-ES-RKHS, a generalized CMA-ES framework that is able to carry out black-box functional optimisation in RKHS. A search distribution on non-parametric function spaces, represented as a Gaussian process, is adapted by updating both its mean function and covariance operator. Adaptive and sparse representation of the mean function and the covariance operator can be retained for efficient computation in the updates and evaluations of CMA-ES-RKHS by resorting to sparsification. We will also show how to apply our new black-box framework to search for an optimum policy in reinforcement learning in which policies are represented as functions in a RKHS. CMA-ES-RKHS is evaluated on two functional optimization problems and two bench-marking reinforcement learning domains.</description><identifier>ISSN: 1389-2576</identifier><identifier>EISSN: 1573-7632</identifier><identifier>DOI: 10.1007/s10710-019-09357-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation ; Algorithms ; Artificial Intelligence ; Biological evolution ; Biomedical Engineering and Bioengineering ; Compilers ; Computer Science ; Covariance matrix ; Domains ; Electrical Engineering ; Function space ; Functionals ; Gaussian process ; Hilbert space ; Interpreters ; Kernels ; Machine learning ; Operators (mathematics) ; Optimization ; Programming Languages ; Programming Techniques ; Software Engineering/Programming and Operating Systems</subject><ispartof>Genetic programming and evolvable machines, 2019-12, Vol.20 (4), p.479-501</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b8ad9bde01507d90ba4903666a7cf2dc58c89f3f610084002db2209db2ff606a3</citedby><cites>FETCH-LOGICAL-c363t-b8ad9bde01507d90ba4903666a7cf2dc58c89f3f610084002db2209db2ff606a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dang, Viet-Hung</creatorcontrib><creatorcontrib>Vien, Ngo Anh</creatorcontrib><creatorcontrib>Chung, TaeChoong</creatorcontrib><title>A covariance matrix adaptation evolution strategy in reproducing kernel Hilbert space</title><title>Genetic programming and evolvable machines</title><addtitle>Genet Program Evolvable Mach</addtitle><description>The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient derivative-free optimization algorithm. It optimizes a black-box objective function over a well-defined parameter space in which feature functions are often defined manually. Therefore, the performance of those techniques strongly depends on the quality of the chosen features or the underlying parametric function space. Hence, enabling CMA-ES to optimize on a more complex and general function class has long been desired. In this paper, we consider modeling the input spaces in black-box optimization non-parametrically in reproducing kernel Hilbert spaces (RKHS). This modeling leads to a functional optimisation problem whose domain is a RKHS function space that enables optimisation in a very rich function class. We propose CMA-ES-RKHS, a generalized CMA-ES framework that is able to carry out black-box functional optimisation in RKHS. A search distribution on non-parametric function spaces, represented as a Gaussian process, is adapted by updating both its mean function and covariance operator. Adaptive and sparse representation of the mean function and the covariance operator can be retained for efficient computation in the updates and evaluations of CMA-ES-RKHS by resorting to sparsification. We will also show how to apply our new black-box framework to search for an optimum policy in reinforcement learning in which policies are represented as functions in a RKHS. CMA-ES-RKHS is evaluated on two functional optimization problems and two bench-marking reinforcement learning domains.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biological evolution</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Covariance matrix</subject><subject>Domains</subject><subject>Electrical Engineering</subject><subject>Function space</subject><subject>Functionals</subject><subject>Gaussian process</subject><subject>Hilbert space</subject><subject>Interpreters</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Programming Languages</subject><subject>Programming Techniques</subject><subject>Software Engineering/Programming and Operating Systems</subject><issn>1389-2576</issn><issn>1573-7632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwBZgsMRvOdm3HY1XxT6rEQmfLcZwqJU2C7VT022MaJDaWuxvee3f3Q-iWwj0FUA-RgqJAgGoCmgtF6BmaUaE4UZKz8zzzQhMmlLxEVzHuAKhkQs_QZoldf7ChsZ3zeG9TaL6wreyQbGr6DvtD346nKaZgk98ecdPh4IfQV6Nrui3-8KHzLX5p2tKHhONgnb9GF7Vto7_57XO0eXp8X72Q9dvz62q5Jo5LnkhZ2EqXlQcqQFUaSrvQwKWUVrmaVU4UrtA1r2X-sVgAsKpkDHSudS1BWj5Hd1NuPudz9DGZXT-GLq80jIOgwJgqsopNKhf6GIOvzRCavQ1HQ8H84DMTPpPxmRM-Q7OJT6aYxd3Wh7_of1zfhKNzYg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Dang, Viet-Hung</creator><creator>Vien, Ngo Anh</creator><creator>Chung, TaeChoong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>A covariance matrix adaptation evolution strategy in reproducing kernel Hilbert space</title><author>Dang, Viet-Hung ; Vien, Ngo Anh ; Chung, TaeChoong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b8ad9bde01507d90ba4903666a7cf2dc58c89f3f610084002db2209db2ff606a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biological evolution</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Covariance matrix</topic><topic>Domains</topic><topic>Electrical Engineering</topic><topic>Function space</topic><topic>Functionals</topic><topic>Gaussian process</topic><topic>Hilbert space</topic><topic>Interpreters</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Programming Languages</topic><topic>Programming Techniques</topic><topic>Software Engineering/Programming and Operating Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Viet-Hung</creatorcontrib><creatorcontrib>Vien, Ngo Anh</creatorcontrib><creatorcontrib>Chung, TaeChoong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Genetic programming and evolvable machines</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Viet-Hung</au><au>Vien, Ngo Anh</au><au>Chung, TaeChoong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A covariance matrix adaptation evolution strategy in reproducing kernel Hilbert space</atitle><jtitle>Genetic programming and evolvable machines</jtitle><stitle>Genet Program Evolvable Mach</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>20</volume><issue>4</issue><spage>479</spage><epage>501</epage><pages>479-501</pages><issn>1389-2576</issn><eissn>1573-7632</eissn><abstract>The covariance matrix adaptation evolution strategy (CMA-ES) is an efficient derivative-free optimization algorithm. It optimizes a black-box objective function over a well-defined parameter space in which feature functions are often defined manually. Therefore, the performance of those techniques strongly depends on the quality of the chosen features or the underlying parametric function space. Hence, enabling CMA-ES to optimize on a more complex and general function class has long been desired. In this paper, we consider modeling the input spaces in black-box optimization non-parametrically in reproducing kernel Hilbert spaces (RKHS). This modeling leads to a functional optimisation problem whose domain is a RKHS function space that enables optimisation in a very rich function class. We propose CMA-ES-RKHS, a generalized CMA-ES framework that is able to carry out black-box functional optimisation in RKHS. A search distribution on non-parametric function spaces, represented as a Gaussian process, is adapted by updating both its mean function and covariance operator. Adaptive and sparse representation of the mean function and the covariance operator can be retained for efficient computation in the updates and evaluations of CMA-ES-RKHS by resorting to sparsification. We will also show how to apply our new black-box framework to search for an optimum policy in reinforcement learning in which policies are represented as functions in a RKHS. CMA-ES-RKHS is evaluated on two functional optimization problems and two bench-marking reinforcement learning domains.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10710-019-09357-1</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1389-2576
ispartof Genetic programming and evolvable machines, 2019-12, Vol.20 (4), p.479-501
issn 1389-2576
1573-7632
language eng
recordid cdi_proquest_journals_2305102278
source Springer Link
subjects Adaptation
Algorithms
Artificial Intelligence
Biological evolution
Biomedical Engineering and Bioengineering
Compilers
Computer Science
Covariance matrix
Domains
Electrical Engineering
Function space
Functionals
Gaussian process
Hilbert space
Interpreters
Kernels
Machine learning
Operators (mathematics)
Optimization
Programming Languages
Programming Techniques
Software Engineering/Programming and Operating Systems
title A covariance matrix adaptation evolution strategy in reproducing kernel Hilbert space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20covariance%20matrix%20adaptation%20evolution%20strategy%20in%20reproducing%20kernel%20Hilbert%20space&rft.jtitle=Genetic%20programming%20and%20evolvable%20machines&rft.au=Dang,%20Viet-Hung&rft.date=2019-12-01&rft.volume=20&rft.issue=4&rft.spage=479&rft.epage=501&rft.pages=479-501&rft.issn=1389-2576&rft.eissn=1573-7632&rft_id=info:doi/10.1007/s10710-019-09357-1&rft_dat=%3Cproquest_cross%3E2305102278%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-b8ad9bde01507d90ba4903666a7cf2dc58c89f3f610084002db2209db2ff606a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305102278&rft_id=info:pmid/&rfr_iscdi=true