Loading…
On α-labellings of lobsters and trees with a perfect matching
A graceful labelling of a tree T is an injective function f:V(T)→{0,…,|E(T)|} such that {|f(u)−f(v)|:uv∈E(T)}={1,…,|E(T)|}. An α-labelling of a tree T is a graceful labelling f with the additional property that there exists an integer k∈{0,…,|E(T)|} such that, for each edge uv∈E(T), either f(u)≤k...
Saved in:
Published in: | Discrete Applied Mathematics 2019-09, Vol.268, p.137-151 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c277t-6c8bcc78a86665634b5acc68fe47d6e0d38cac361912a2aa6eaf4ae09ac12a1e3 |
container_end_page | 151 |
container_issue | |
container_start_page | 137 |
container_title | Discrete Applied Mathematics |
container_volume | 268 |
creator | Luiz, Atílio G. Campos, C.N. Richter, R. Bruce |
description | A graceful labelling of a tree T is an injective function f:V(T)→{0,…,|E(T)|} such that {|f(u)−f(v)|:uv∈E(T)}={1,…,|E(T)|}. An α-labelling of a tree T is a graceful labelling f with the additional property that there exists an integer k∈{0,…,|E(T)|} such that, for each edge uv∈E(T), either f(u)≤k |
doi_str_mv | 10.1016/j.dam.2019.05.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2305512369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X19302550</els_id><sourcerecordid>2305512369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-6c8bcc78a86665634b5acc68fe47d6e0d38cac361912a2aa6eaf4ae09ac12a1e3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gLuA69YkbZMUQRDxBgOzUXAXTtNTJ6XTjklG8bF8EZ_JDOPaVTjh-8_lI-Scs5wzLi_7vIV1Lhivc1bljJUHZMa1EplUih-SWWJkJrh-PSYnIfSMMZ6qGblejvTnOxugwWFw41ugU0eHqQkRfaAwtjR6xEA_XVxRoBv0HdpI1xDtKuGn5KiDIeDZ3zsnL_d3z7eP2WL58HR7s8isUCpm0urGWqVBSykrWZRNBdZK3WGpWomsLbQFW0hecwECQCJ0JSCrwaYPjsWcXOz7bvz0vsUQTT9t_ZhGGlGwquKikHWi-J6yfgrBY2c23q3BfxnOzE6T6U3SZHaaDKtM0pQyV_sMpvU_HHoTrMPRYut8utS0k_sn_Qus-XA_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305512369</pqid></control><display><type>article</type><title>On α-labellings of lobsters and trees with a perfect matching</title><source>Elsevier</source><creator>Luiz, Atílio G. ; Campos, C.N. ; Richter, R. Bruce</creator><creatorcontrib>Luiz, Atílio G. ; Campos, C.N. ; Richter, R. Bruce</creatorcontrib><description>A graceful labelling of a tree T is an injective function f:V(T)→{0,…,|E(T)|} such that {|f(u)−f(v)|:uv∈E(T)}={1,…,|E(T)|}. An α-labelling of a tree T is a graceful labelling f with the additional property that there exists an integer k∈{0,…,|E(T)|} such that, for each edge uv∈E(T), either f(u)≤k<f(v) or f(v)≤k<f(u). In this work, we prove that the following families of trees with maximum degree three have α-labellings: lobsters with maximum degree three, without Y-legs and with at most one forbidden ending; trees T with a perfect matching M such that the contraction T∕M has a balanced bipartition and an α-labelling; and trees with a perfect matching such that their contree is a caterpillar with a balanced bipartition. These results are a step towards the conjecture posed by Bermond in 1979 that all lobsters have graceful labellings and also reinforce a conjecture posed by Brankovic, Murch, Pond and Rosa in 2005, which says that every tree with maximum degree three and a perfect matching has an α-labelling.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2019.05.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[formula omitted]-labelling ; Graceful labelling ; Graceful tree conjecture ; Labeling ; Lobsters ; Matching ; Maximum degree three ; Trees</subject><ispartof>Discrete Applied Mathematics, 2019-09, Vol.268, p.137-151</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-6c8bcc78a86665634b5acc68fe47d6e0d38cac361912a2aa6eaf4ae09ac12a1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Luiz, Atílio G.</creatorcontrib><creatorcontrib>Campos, C.N.</creatorcontrib><creatorcontrib>Richter, R. Bruce</creatorcontrib><title>On α-labellings of lobsters and trees with a perfect matching</title><title>Discrete Applied Mathematics</title><description>A graceful labelling of a tree T is an injective function f:V(T)→{0,…,|E(T)|} such that {|f(u)−f(v)|:uv∈E(T)}={1,…,|E(T)|}. An α-labelling of a tree T is a graceful labelling f with the additional property that there exists an integer k∈{0,…,|E(T)|} such that, for each edge uv∈E(T), either f(u)≤k<f(v) or f(v)≤k<f(u). In this work, we prove that the following families of trees with maximum degree three have α-labellings: lobsters with maximum degree three, without Y-legs and with at most one forbidden ending; trees T with a perfect matching M such that the contraction T∕M has a balanced bipartition and an α-labelling; and trees with a perfect matching such that their contree is a caterpillar with a balanced bipartition. These results are a step towards the conjecture posed by Bermond in 1979 that all lobsters have graceful labellings and also reinforce a conjecture posed by Brankovic, Murch, Pond and Rosa in 2005, which says that every tree with maximum degree three and a perfect matching has an α-labelling.</description><subject>[formula omitted]-labelling</subject><subject>Graceful labelling</subject><subject>Graceful tree conjecture</subject><subject>Labeling</subject><subject>Lobsters</subject><subject>Matching</subject><subject>Maximum degree three</subject><subject>Trees</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gLuA69YkbZMUQRDxBgOzUXAXTtNTJ6XTjklG8bF8EZ_JDOPaVTjh-8_lI-Scs5wzLi_7vIV1Lhivc1bljJUHZMa1EplUih-SWWJkJrh-PSYnIfSMMZ6qGblejvTnOxugwWFw41ugU0eHqQkRfaAwtjR6xEA_XVxRoBv0HdpI1xDtKuGn5KiDIeDZ3zsnL_d3z7eP2WL58HR7s8isUCpm0urGWqVBSykrWZRNBdZK3WGpWomsLbQFW0hecwECQCJ0JSCrwaYPjsWcXOz7bvz0vsUQTT9t_ZhGGlGwquKikHWi-J6yfgrBY2c23q3BfxnOzE6T6U3SZHaaDKtM0pQyV_sMpvU_HHoTrMPRYut8utS0k_sn_Qus-XA_</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Luiz, Atílio G.</creator><creator>Campos, C.N.</creator><creator>Richter, R. Bruce</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190915</creationdate><title>On α-labellings of lobsters and trees with a perfect matching</title><author>Luiz, Atílio G. ; Campos, C.N. ; Richter, R. Bruce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-6c8bcc78a86665634b5acc68fe47d6e0d38cac361912a2aa6eaf4ae09ac12a1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>[formula omitted]-labelling</topic><topic>Graceful labelling</topic><topic>Graceful tree conjecture</topic><topic>Labeling</topic><topic>Lobsters</topic><topic>Matching</topic><topic>Maximum degree three</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luiz, Atílio G.</creatorcontrib><creatorcontrib>Campos, C.N.</creatorcontrib><creatorcontrib>Richter, R. Bruce</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luiz, Atílio G.</au><au>Campos, C.N.</au><au>Richter, R. Bruce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On α-labellings of lobsters and trees with a perfect matching</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2019-09-15</date><risdate>2019</risdate><volume>268</volume><spage>137</spage><epage>151</epage><pages>137-151</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A graceful labelling of a tree T is an injective function f:V(T)→{0,…,|E(T)|} such that {|f(u)−f(v)|:uv∈E(T)}={1,…,|E(T)|}. An α-labelling of a tree T is a graceful labelling f with the additional property that there exists an integer k∈{0,…,|E(T)|} such that, for each edge uv∈E(T), either f(u)≤k<f(v) or f(v)≤k<f(u). In this work, we prove that the following families of trees with maximum degree three have α-labellings: lobsters with maximum degree three, without Y-legs and with at most one forbidden ending; trees T with a perfect matching M such that the contraction T∕M has a balanced bipartition and an α-labelling; and trees with a perfect matching such that their contree is a caterpillar with a balanced bipartition. These results are a step towards the conjecture posed by Bermond in 1979 that all lobsters have graceful labellings and also reinforce a conjecture posed by Brankovic, Murch, Pond and Rosa in 2005, which says that every tree with maximum degree three and a perfect matching has an α-labelling.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2019.05.004</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2019-09, Vol.268, p.137-151 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2305512369 |
source | Elsevier |
subjects | [formula omitted]-labelling Graceful labelling Graceful tree conjecture Labeling Lobsters Matching Maximum degree three Trees |
title | On α-labellings of lobsters and trees with a perfect matching |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20%CE%B1-labellings%20of%20lobsters%20and%20trees%20with%20a%20perfect%20matching&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Luiz,%20At%C3%ADlio%20G.&rft.date=2019-09-15&rft.volume=268&rft.spage=137&rft.epage=151&rft.pages=137-151&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2019.05.004&rft_dat=%3Cproquest_cross%3E2305512369%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-6c8bcc78a86665634b5acc68fe47d6e0d38cac361912a2aa6eaf4ae09ac12a1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305512369&rft_id=info:pmid/&rfr_iscdi=true |