Loading…
Constant Gaussian curvature foliations and Schläfli formulas of hyperbolic \(3\)-manifolds
We study the geometry of the foliation by constant Gaussian curvature surfaces \((\Sigma_k)_k\) of a hyperbolic end, and how it relates to the structures of its boundary at infinity and of its pleated boundary. First, we show that the Thurston and the Schwarzian parametrizations are the limits of tw...
Saved in:
Published in: | arXiv.org 2019-10 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mazzoli, Filippo |
description | We study the geometry of the foliation by constant Gaussian curvature surfaces \((\Sigma_k)_k\) of a hyperbolic end, and how it relates to the structures of its boundary at infinity and of its pleated boundary. First, we show that the Thurston and the Schwarzian parametrizations are the limits of two families of parametrizations of the space of hyperbolic ends, defined by Labourie in 1992 in terms of the geometry of the leaves \(\Sigma_k\). We give a new description of the renormalized volume using the constant curvature foliation. We prove a generalization of McMullen's Kleinian reciprocity theorem, which replaces the role of the Schwarzian parametrization with Labourie's parametrizations. Finally, we describe the constant curvature foliation of a hyperbolic end as the integral curve of a time-dependent Hamiltonian vector field on the cotangent space to Teichm\"uller space, in analogy to the Moncrief flow for constant mean curvature foliations in Lorenzian space-times. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2305674502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305674502</sourcerecordid><originalsourceid>FETCH-proquest_journals_23056745023</originalsourceid><addsrcrecordid>eNqNyz0KwjAYxvEgCIr2DgEXHQoxaay7-LHrplBe24ZG0kTzJoL38SZezAwewOkZ_r9nQMZciGW-LjgfkQzxxhjjq5JLKcbkvHEWA9hA9xARNVhaR_-EEH1LlTMagk6Cgm3ose7M562MTsH30QBSp2j3urf-mmRNL3NxWeQ9WJ2eDU7JUIHBNvvthMx229PmkN-9e8QWQ3Vz0duUKi6YXJWFZFz8p74H3kPW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305674502</pqid></control><display><type>article</type><title>Constant Gaussian curvature foliations and Schläfli formulas of hyperbolic \(3\)-manifolds</title><source>Publicly Available Content (ProQuest)</source><creator>Mazzoli, Filippo</creator><creatorcontrib>Mazzoli, Filippo</creatorcontrib><description>We study the geometry of the foliation by constant Gaussian curvature surfaces \((\Sigma_k)_k\) of a hyperbolic end, and how it relates to the structures of its boundary at infinity and of its pleated boundary. First, we show that the Thurston and the Schwarzian parametrizations are the limits of two families of parametrizations of the space of hyperbolic ends, defined by Labourie in 1992 in terms of the geometry of the leaves \(\Sigma_k\). We give a new description of the renormalized volume using the constant curvature foliation. We prove a generalization of McMullen's Kleinian reciprocity theorem, which replaces the role of the Schwarzian parametrization with Labourie's parametrizations. Finally, we describe the constant curvature foliation of a hyperbolic end as the integral curve of a time-dependent Hamiltonian vector field on the cotangent space to Teichm\"uller space, in analogy to the Moncrief flow for constant mean curvature foliations in Lorenzian space-times.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Curvature ; Fields (mathematics) ; Parameterization ; Reciprocity ; Reciprocity theorem ; Time dependence</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2305674502?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Mazzoli, Filippo</creatorcontrib><title>Constant Gaussian curvature foliations and Schläfli formulas of hyperbolic \(3\)-manifolds</title><title>arXiv.org</title><description>We study the geometry of the foliation by constant Gaussian curvature surfaces \((\Sigma_k)_k\) of a hyperbolic end, and how it relates to the structures of its boundary at infinity and of its pleated boundary. First, we show that the Thurston and the Schwarzian parametrizations are the limits of two families of parametrizations of the space of hyperbolic ends, defined by Labourie in 1992 in terms of the geometry of the leaves \(\Sigma_k\). We give a new description of the renormalized volume using the constant curvature foliation. We prove a generalization of McMullen's Kleinian reciprocity theorem, which replaces the role of the Schwarzian parametrization with Labourie's parametrizations. Finally, we describe the constant curvature foliation of a hyperbolic end as the integral curve of a time-dependent Hamiltonian vector field on the cotangent space to Teichm\"uller space, in analogy to the Moncrief flow for constant mean curvature foliations in Lorenzian space-times.</description><subject>Curvature</subject><subject>Fields (mathematics)</subject><subject>Parameterization</subject><subject>Reciprocity</subject><subject>Reciprocity theorem</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyz0KwjAYxvEgCIr2DgEXHQoxaay7-LHrplBe24ZG0kTzJoL38SZezAwewOkZ_r9nQMZciGW-LjgfkQzxxhjjq5JLKcbkvHEWA9hA9xARNVhaR_-EEH1LlTMagk6Cgm3ose7M562MTsH30QBSp2j3urf-mmRNL3NxWeQ9WJ2eDU7JUIHBNvvthMx229PmkN-9e8QWQ3Vz0duUKi6YXJWFZFz8p74H3kPW</recordid><startdate>20191014</startdate><enddate>20191014</enddate><creator>Mazzoli, Filippo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191014</creationdate><title>Constant Gaussian curvature foliations and Schläfli formulas of hyperbolic \(3\)-manifolds</title><author>Mazzoli, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23056745023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Curvature</topic><topic>Fields (mathematics)</topic><topic>Parameterization</topic><topic>Reciprocity</topic><topic>Reciprocity theorem</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Mazzoli, Filippo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazzoli, Filippo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Constant Gaussian curvature foliations and Schläfli formulas of hyperbolic \(3\)-manifolds</atitle><jtitle>arXiv.org</jtitle><date>2019-10-14</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We study the geometry of the foliation by constant Gaussian curvature surfaces \((\Sigma_k)_k\) of a hyperbolic end, and how it relates to the structures of its boundary at infinity and of its pleated boundary. First, we show that the Thurston and the Schwarzian parametrizations are the limits of two families of parametrizations of the space of hyperbolic ends, defined by Labourie in 1992 in terms of the geometry of the leaves \(\Sigma_k\). We give a new description of the renormalized volume using the constant curvature foliation. We prove a generalization of McMullen's Kleinian reciprocity theorem, which replaces the role of the Schwarzian parametrization with Labourie's parametrizations. Finally, we describe the constant curvature foliation of a hyperbolic end as the integral curve of a time-dependent Hamiltonian vector field on the cotangent space to Teichm\"uller space, in analogy to the Moncrief flow for constant mean curvature foliations in Lorenzian space-times.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2305674502 |
source | Publicly Available Content (ProQuest) |
subjects | Curvature Fields (mathematics) Parameterization Reciprocity Reciprocity theorem Time dependence |
title | Constant Gaussian curvature foliations and Schläfli formulas of hyperbolic \(3\)-manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Constant%20Gaussian%20curvature%20foliations%20and%20Schl%C3%A4fli%20formulas%20of%20hyperbolic%20%5C(3%5C)-manifolds&rft.jtitle=arXiv.org&rft.au=Mazzoli,%20Filippo&rft.date=2019-10-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2305674502%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23056745023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305674502&rft_id=info:pmid/&rfr_iscdi=true |