Loading…

Effect of Heat on Deformations in Material with a Defect

A system of thermoelasticity equations is considered. Boundary transmission conditions are specified by the differences in temperature, heat fluxes, deformations, and their first derivatives on the boundary. The stationary case is studied. The boundary (crack) is represented by the interval of the a...

Full description

Saved in:
Bibliographic Details
Published in:Computational mathematics and mathematical physics 2019-09, Vol.59 (9), p.1470-1474
Main Authors: Astakhova, E. V., Glushko, A. V., Loginova, E. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3
cites cdi_FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3
container_end_page 1474
container_issue 9
container_start_page 1470
container_title Computational mathematics and mathematical physics
container_volume 59
creator Astakhova, E. V.
Glushko, A. V.
Loginova, E. A.
description A system of thermoelasticity equations is considered. Boundary transmission conditions are specified by the differences in temperature, heat fluxes, deformations, and their first derivatives on the boundary. The stationary case is studied. The boundary (crack) is represented by the interval of the axis. The given problem is investigated, its solution is found, and the well-posedness of its formulation is proved. The results of previous works are generalized. The subject of greatest interest is the asymptotic behavior, as , of the displacements of a point under material deformations and the asymptotic behavior of their derivatives. Here, the functions are assumed to depend on the material temperature at the point .
doi_str_mv 10.1134/S0965542519090057
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2305844033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305844033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA8-rMJpNmj1KrFSoe1PMypoluaXdrskX892ap4EE8PYb3vTfwhDhHuERU-uoJKkOkS8IKKgCaHIgRElFhjCkPxWiwi8E_FicprQDQVFaNhJ2F4F0vuyDnnrO28saHLm64b7o2yaaVD9z72PBafjb9u-TBz4lTcRR4nfzZj47Fy-3seTovFo9399PrReEUmr5Ar6Cy4JbkvXHMDpca0LI3Ol-lW5aBtCKFBJMMVkyWLb2GwBqCoqDG4mLfu43dx86nvl51u9jml3WpgKzWoFSmcE-52KUUfai3sdlw_KoR6mGg-s9AOVPuMymz7ZuPv83_h74BmRNlZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305844033</pqid></control><display><type>article</type><title>Effect of Heat on Deformations in Material with a Defect</title><source>Springer Nature</source><creator>Astakhova, E. V. ; Glushko, A. V. ; Loginova, E. A.</creator><creatorcontrib>Astakhova, E. V. ; Glushko, A. V. ; Loginova, E. A.</creatorcontrib><description>A system of thermoelasticity equations is considered. Boundary transmission conditions are specified by the differences in temperature, heat fluxes, deformations, and their first derivatives on the boundary. The stationary case is studied. The boundary (crack) is represented by the interval of the axis. The given problem is investigated, its solution is found, and the well-posedness of its formulation is proved. The results of previous works are generalized. The subject of greatest interest is the asymptotic behavior, as , of the displacements of a point under material deformations and the asymptotic behavior of their derivatives. Here, the functions are assumed to depend on the material temperature at the point .</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542519090057</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic properties ; Computational Mathematics and Numerical Analysis ; Deformation effects ; Derivatives ; Heat flux ; Mathematics ; Mathematics and Statistics ; Temperature ; Thermoelasticity ; Well posed problems</subject><ispartof>Computational mathematics and mathematical physics, 2019-09, Vol.59 (9), p.1470-1474</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3</citedby><cites>FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Astakhova, E. V.</creatorcontrib><creatorcontrib>Glushko, A. V.</creatorcontrib><creatorcontrib>Loginova, E. A.</creatorcontrib><title>Effect of Heat on Deformations in Material with a Defect</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>A system of thermoelasticity equations is considered. Boundary transmission conditions are specified by the differences in temperature, heat fluxes, deformations, and their first derivatives on the boundary. The stationary case is studied. The boundary (crack) is represented by the interval of the axis. The given problem is investigated, its solution is found, and the well-posedness of its formulation is proved. The results of previous works are generalized. The subject of greatest interest is the asymptotic behavior, as , of the displacements of a point under material deformations and the asymptotic behavior of their derivatives. Here, the functions are assumed to depend on the material temperature at the point .</description><subject>Asymptotic properties</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Deformation effects</subject><subject>Derivatives</subject><subject>Heat flux</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Temperature</subject><subject>Thermoelasticity</subject><subject>Well posed problems</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA8-rMJpNmj1KrFSoe1PMypoluaXdrskX892ap4EE8PYb3vTfwhDhHuERU-uoJKkOkS8IKKgCaHIgRElFhjCkPxWiwi8E_FicprQDQVFaNhJ2F4F0vuyDnnrO28saHLm64b7o2yaaVD9z72PBafjb9u-TBz4lTcRR4nfzZj47Fy-3seTovFo9399PrReEUmr5Ar6Cy4JbkvXHMDpca0LI3Ol-lW5aBtCKFBJMMVkyWLb2GwBqCoqDG4mLfu43dx86nvl51u9jml3WpgKzWoFSmcE-52KUUfai3sdlw_KoR6mGg-s9AOVPuMymz7ZuPv83_h74BmRNlZQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Astakhova, E. V.</creator><creator>Glushko, A. V.</creator><creator>Loginova, E. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190901</creationdate><title>Effect of Heat on Deformations in Material with a Defect</title><author>Astakhova, E. V. ; Glushko, A. V. ; Loginova, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic properties</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Deformation effects</topic><topic>Derivatives</topic><topic>Heat flux</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Temperature</topic><topic>Thermoelasticity</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Astakhova, E. V.</creatorcontrib><creatorcontrib>Glushko, A. V.</creatorcontrib><creatorcontrib>Loginova, E. A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Astakhova, E. V.</au><au>Glushko, A. V.</au><au>Loginova, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Heat on Deformations in Material with a Defect</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>59</volume><issue>9</issue><spage>1470</spage><epage>1474</epage><pages>1470-1474</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>A system of thermoelasticity equations is considered. Boundary transmission conditions are specified by the differences in temperature, heat fluxes, deformations, and their first derivatives on the boundary. The stationary case is studied. The boundary (crack) is represented by the interval of the axis. The given problem is investigated, its solution is found, and the well-posedness of its formulation is proved. The results of previous works are generalized. The subject of greatest interest is the asymptotic behavior, as , of the displacements of a point under material deformations and the asymptotic behavior of their derivatives. Here, the functions are assumed to depend on the material temperature at the point .</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542519090057</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2019-09, Vol.59 (9), p.1470-1474
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_2305844033
source Springer Nature
subjects Asymptotic properties
Computational Mathematics and Numerical Analysis
Deformation effects
Derivatives
Heat flux
Mathematics
Mathematics and Statistics
Temperature
Thermoelasticity
Well posed problems
title Effect of Heat on Deformations in Material with a Defect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Heat%20on%20Deformations%20in%20Material%20with%20a%20Defect&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Astakhova,%20E.%20V.&rft.date=2019-09-01&rft.volume=59&rft.issue=9&rft.spage=1470&rft.epage=1474&rft.pages=1470-1474&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542519090057&rft_dat=%3Cproquest_cross%3E2305844033%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305844033&rft_id=info:pmid/&rfr_iscdi=true