Loading…
Effect of Heat on Deformations in Material with a Defect
A system of thermoelasticity equations is considered. Boundary transmission conditions are specified by the differences in temperature, heat fluxes, deformations, and their first derivatives on the boundary. The stationary case is studied. The boundary (crack) is represented by the interval of the a...
Saved in:
Published in: | Computational mathematics and mathematical physics 2019-09, Vol.59 (9), p.1470-1474 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3 |
container_end_page | 1474 |
container_issue | 9 |
container_start_page | 1470 |
container_title | Computational mathematics and mathematical physics |
container_volume | 59 |
creator | Astakhova, E. V. Glushko, A. V. Loginova, E. A. |
description | A system of thermoelasticity equations is considered. Boundary transmission conditions are specified by the differences in temperature, heat fluxes, deformations, and their first derivatives on the boundary. The stationary case is studied. The boundary (crack) is represented by the interval
of the
axis. The given problem is investigated, its solution is found, and the well-posedness of its formulation is proved. The results of previous works are generalized. The subject of greatest interest is the asymptotic behavior, as
, of the displacements
of a point
under material deformations and the asymptotic behavior of their derivatives. Here, the functions
are assumed to depend on the material temperature
at the point
. |
doi_str_mv | 10.1134/S0965542519090057 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2305844033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305844033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvA8-rMJpNmj1KrFSoe1PMypoluaXdrskX892ap4EE8PYb3vTfwhDhHuERU-uoJKkOkS8IKKgCaHIgRElFhjCkPxWiwi8E_FicprQDQVFaNhJ2F4F0vuyDnnrO28saHLm64b7o2yaaVD9z72PBafjb9u-TBz4lTcRR4nfzZj47Fy-3seTovFo9399PrReEUmr5Ar6Cy4JbkvXHMDpca0LI3Ol-lW5aBtCKFBJMMVkyWLb2GwBqCoqDG4mLfu43dx86nvl51u9jml3WpgKzWoFSmcE-52KUUfai3sdlw_KoR6mGg-s9AOVPuMymz7ZuPv83_h74BmRNlZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305844033</pqid></control><display><type>article</type><title>Effect of Heat on Deformations in Material with a Defect</title><source>Springer Nature</source><creator>Astakhova, E. V. ; Glushko, A. V. ; Loginova, E. A.</creator><creatorcontrib>Astakhova, E. V. ; Glushko, A. V. ; Loginova, E. A.</creatorcontrib><description>A system of thermoelasticity equations is considered. Boundary transmission conditions are specified by the differences in temperature, heat fluxes, deformations, and their first derivatives on the boundary. The stationary case is studied. The boundary (crack) is represented by the interval
of the
axis. The given problem is investigated, its solution is found, and the well-posedness of its formulation is proved. The results of previous works are generalized. The subject of greatest interest is the asymptotic behavior, as
, of the displacements
of a point
under material deformations and the asymptotic behavior of their derivatives. Here, the functions
are assumed to depend on the material temperature
at the point
.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542519090057</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic properties ; Computational Mathematics and Numerical Analysis ; Deformation effects ; Derivatives ; Heat flux ; Mathematics ; Mathematics and Statistics ; Temperature ; Thermoelasticity ; Well posed problems</subject><ispartof>Computational mathematics and mathematical physics, 2019-09, Vol.59 (9), p.1470-1474</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3</citedby><cites>FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Astakhova, E. V.</creatorcontrib><creatorcontrib>Glushko, A. V.</creatorcontrib><creatorcontrib>Loginova, E. A.</creatorcontrib><title>Effect of Heat on Deformations in Material with a Defect</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>A system of thermoelasticity equations is considered. Boundary transmission conditions are specified by the differences in temperature, heat fluxes, deformations, and their first derivatives on the boundary. The stationary case is studied. The boundary (crack) is represented by the interval
of the
axis. The given problem is investigated, its solution is found, and the well-posedness of its formulation is proved. The results of previous works are generalized. The subject of greatest interest is the asymptotic behavior, as
, of the displacements
of a point
under material deformations and the asymptotic behavior of their derivatives. Here, the functions
are assumed to depend on the material temperature
at the point
.</description><subject>Asymptotic properties</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Deformation effects</subject><subject>Derivatives</subject><subject>Heat flux</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Temperature</subject><subject>Thermoelasticity</subject><subject>Well posed problems</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFvA8-rMJpNmj1KrFSoe1PMypoluaXdrskX892ap4EE8PYb3vTfwhDhHuERU-uoJKkOkS8IKKgCaHIgRElFhjCkPxWiwi8E_FicprQDQVFaNhJ2F4F0vuyDnnrO28saHLm64b7o2yaaVD9z72PBafjb9u-TBz4lTcRR4nfzZj47Fy-3seTovFo9399PrReEUmr5Ar6Cy4JbkvXHMDpca0LI3Ol-lW5aBtCKFBJMMVkyWLb2GwBqCoqDG4mLfu43dx86nvl51u9jml3WpgKzWoFSmcE-52KUUfai3sdlw_KoR6mGg-s9AOVPuMymz7ZuPv83_h74BmRNlZQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Astakhova, E. V.</creator><creator>Glushko, A. V.</creator><creator>Loginova, E. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190901</creationdate><title>Effect of Heat on Deformations in Material with a Defect</title><author>Astakhova, E. V. ; Glushko, A. V. ; Loginova, E. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asymptotic properties</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Deformation effects</topic><topic>Derivatives</topic><topic>Heat flux</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Temperature</topic><topic>Thermoelasticity</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Astakhova, E. V.</creatorcontrib><creatorcontrib>Glushko, A. V.</creatorcontrib><creatorcontrib>Loginova, E. A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Astakhova, E. V.</au><au>Glushko, A. V.</au><au>Loginova, E. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Heat on Deformations in Material with a Defect</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>59</volume><issue>9</issue><spage>1470</spage><epage>1474</epage><pages>1470-1474</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>A system of thermoelasticity equations is considered. Boundary transmission conditions are specified by the differences in temperature, heat fluxes, deformations, and their first derivatives on the boundary. The stationary case is studied. The boundary (crack) is represented by the interval
of the
axis. The given problem is investigated, its solution is found, and the well-posedness of its formulation is proved. The results of previous works are generalized. The subject of greatest interest is the asymptotic behavior, as
, of the displacements
of a point
under material deformations and the asymptotic behavior of their derivatives. Here, the functions
are assumed to depend on the material temperature
at the point
.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542519090057</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2019-09, Vol.59 (9), p.1470-1474 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2305844033 |
source | Springer Nature |
subjects | Asymptotic properties Computational Mathematics and Numerical Analysis Deformation effects Derivatives Heat flux Mathematics Mathematics and Statistics Temperature Thermoelasticity Well posed problems |
title | Effect of Heat on Deformations in Material with a Defect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Heat%20on%20Deformations%20in%20Material%20with%20a%20Defect&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Astakhova,%20E.%20V.&rft.date=2019-09-01&rft.volume=59&rft.issue=9&rft.spage=1470&rft.epage=1474&rft.pages=1470-1474&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542519090057&rft_dat=%3Cproquest_cross%3E2305844033%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1e30980cd5ee6caac1d4018ae64caa2cd2f5435315070989a58a85bffa40f35f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305844033&rft_id=info:pmid/&rfr_iscdi=true |