Loading…
Projection Constants of a Class of Codimension-2 Subspaces in l∞2 n
Relative projection constants and strong unicity constants for a certain class of projection operators on the space l ∞ 2 n are found. The maximum values of strong unicity constants are calculated for the projection operators with unit norm on certain codimension-2 subspaces formed by using hyperpla...
Saved in:
Published in: | Functional analysis and its applications 2019, Vol.53 (3), p.182-191 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-p711-a7ee75046e290b660fac8981bc2bdb7b98e54f81597ba531046216f56f2fde6c3 |
container_end_page | 191 |
container_issue | 3 |
container_start_page | 182 |
container_title | Functional analysis and its applications |
container_volume | 53 |
creator | Martynov, O. M. |
description | Relative projection constants and strong unicity constants for a certain class of projection operators on the space
l
∞
2
n
are found. The maximum values of strong unicity constants are calculated for the projection operators with unit norm on certain codimension-2 subspaces formed by using hyperplanes in
l
∞
2
n
. |
doi_str_mv | 10.1134/S0016266319030031 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2305850302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2305850302</sourcerecordid><originalsourceid>FETCH-LOGICAL-p711-a7ee75046e290b660fac8981bc2bdb7b98e54f81597ba531046216f56f2fde6c3</originalsourceid><addsrcrecordid>eNplkM1KxDAUhYMoWEcfwF3AdfXepPnpUsroCAMKM_uSdBLpUJPatO_gU_hwPokdR3Dh6h44H-dwDyHXCLeIvLjbAKBkUnIsgQNwPCEZCsVzXWhxSrKDnR_8c3KR0h4AtEKZkeXLEPeuGdsYaBVDGk0YE42eGlp1Jv3IKu7aNxfSzOSMbiabetO4RNtAu6-PT0bDJTnzpkvu6vcuyPZhua1W-fr58am6X-e9QsyNck4JKKRjJVgpwZtGlxptw-zOKltqJwqvUZTKGsFxJhlKL6Rnfudkwxfk5hjbD_F9cmms93EawtxYMw5Ci_l1NlPsSKV-aMOrG_4ohPqwVv1vLf4Nx-JbZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2305850302</pqid></control><display><type>article</type><title>Projection Constants of a Class of Codimension-2 Subspaces in l∞2 n</title><source>Springer Link</source><creator>Martynov, O. M.</creator><creatorcontrib>Martynov, O. M.</creatorcontrib><description>Relative projection constants and strong unicity constants for a certain class of projection operators on the space
l
∞
2
n
are found. The maximum values of strong unicity constants are calculated for the projection operators with unit norm on certain codimension-2 subspaces formed by using hyperplanes in
l
∞
2
n
.</description><identifier>ISSN: 0016-2663</identifier><identifier>EISSN: 1573-8485</identifier><identifier>DOI: 10.1134/S0016266319030031</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Functional Analysis ; Hyperplanes ; Mathematics ; Mathematics and Statistics ; Operators ; Projection ; Subspaces</subject><ispartof>Functional analysis and its applications, 2019, Vol.53 (3), p.182-191</ispartof><rights>Springer Science+Business Media, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p711-a7ee75046e290b660fac8981bc2bdb7b98e54f81597ba531046216f56f2fde6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Martynov, O. M.</creatorcontrib><title>Projection Constants of a Class of Codimension-2 Subspaces in l∞2 n</title><title>Functional analysis and its applications</title><addtitle>Funct Anal Its Appl</addtitle><description>Relative projection constants and strong unicity constants for a certain class of projection operators on the space
l
∞
2
n
are found. The maximum values of strong unicity constants are calculated for the projection operators with unit norm on certain codimension-2 subspaces formed by using hyperplanes in
l
∞
2
n
.</description><subject>Analysis</subject><subject>Functional Analysis</subject><subject>Hyperplanes</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Projection</subject><subject>Subspaces</subject><issn>0016-2663</issn><issn>1573-8485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNplkM1KxDAUhYMoWEcfwF3AdfXepPnpUsroCAMKM_uSdBLpUJPatO_gU_hwPokdR3Dh6h44H-dwDyHXCLeIvLjbAKBkUnIsgQNwPCEZCsVzXWhxSrKDnR_8c3KR0h4AtEKZkeXLEPeuGdsYaBVDGk0YE42eGlp1Jv3IKu7aNxfSzOSMbiabetO4RNtAu6-PT0bDJTnzpkvu6vcuyPZhua1W-fr58am6X-e9QsyNck4JKKRjJVgpwZtGlxptw-zOKltqJwqvUZTKGsFxJhlKL6Rnfudkwxfk5hjbD_F9cmms93EawtxYMw5Ci_l1NlPsSKV-aMOrG_4ohPqwVv1vLf4Nx-JbZQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Martynov, O. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2019</creationdate><title>Projection Constants of a Class of Codimension-2 Subspaces in l∞2 n</title><author>Martynov, O. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p711-a7ee75046e290b660fac8981bc2bdb7b98e54f81597ba531046216f56f2fde6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Functional Analysis</topic><topic>Hyperplanes</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Projection</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martynov, O. M.</creatorcontrib><jtitle>Functional analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martynov, O. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Projection Constants of a Class of Codimension-2 Subspaces in l∞2 n</atitle><jtitle>Functional analysis and its applications</jtitle><stitle>Funct Anal Its Appl</stitle><date>2019</date><risdate>2019</risdate><volume>53</volume><issue>3</issue><spage>182</spage><epage>191</epage><pages>182-191</pages><issn>0016-2663</issn><eissn>1573-8485</eissn><abstract>Relative projection constants and strong unicity constants for a certain class of projection operators on the space
l
∞
2
n
are found. The maximum values of strong unicity constants are calculated for the projection operators with unit norm on certain codimension-2 subspaces formed by using hyperplanes in
l
∞
2
n
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1134/S0016266319030031</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2663 |
ispartof | Functional analysis and its applications, 2019, Vol.53 (3), p.182-191 |
issn | 0016-2663 1573-8485 |
language | eng |
recordid | cdi_proquest_journals_2305850302 |
source | Springer Link |
subjects | Analysis Functional Analysis Hyperplanes Mathematics Mathematics and Statistics Operators Projection Subspaces |
title | Projection Constants of a Class of Codimension-2 Subspaces in l∞2 n |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Projection%20Constants%20of%20a%20Class%20of%20Codimension-2%20Subspaces%20in%20l%E2%88%9E2%20n&rft.jtitle=Functional%20analysis%20and%20its%20applications&rft.au=Martynov,%20O.%20M.&rft.date=2019&rft.volume=53&rft.issue=3&rft.spage=182&rft.epage=191&rft.pages=182-191&rft.issn=0016-2663&rft.eissn=1573-8485&rft_id=info:doi/10.1134/S0016266319030031&rft_dat=%3Cproquest_sprin%3E2305850302%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p711-a7ee75046e290b660fac8981bc2bdb7b98e54f81597ba531046216f56f2fde6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2305850302&rft_id=info:pmid/&rfr_iscdi=true |