Loading…

Recursion and Hamiltonian operators for integrable nonabelian difference equations

In this paper, we carry out the algebraic study of integrable differential-difference equations whose field variables take values in an associative (but not commutative) algebra. We adapt the Hamiltonian formalism to nonabelian difference Laurent polynomials and describe how to obtain a recursion op...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-07
Main Authors: Casati, Matteo, Wang, Jing Ping
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Casati, Matteo
Wang, Jing Ping
description In this paper, we carry out the algebraic study of integrable differential-difference equations whose field variables take values in an associative (but not commutative) algebra. We adapt the Hamiltonian formalism to nonabelian difference Laurent polynomials and describe how to obtain a recursion operator from the Lax representation of an integrable nonabelian differential-difference system. As an application, we propose a novel family of integrable equations: the nonabelian Narita-Itoh-Bogoyavlensky lattice, for which we construct their recursion operators and Hamiltonian operators and prove the locality of infinitely many commuting symmetries generated from their highly nonlocal recursion operators. Finally, we discuss the nonabelian version of several integrable difference systems, including the relativistic Toda chain and Ablowitz-Ladik lattice.
doi_str_mv 10.48550/arxiv.1910.06807
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2306011570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306011570</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-13a2c124d73c6d08a7df6eb1f636ae36df99496d78b5172a1c43863f31c40e333</originalsourceid><addsrcrecordid>eNotjU1LAzEURYMgWGp_gLuA66lJ3uRjllLUCoVC6b68mbzIlDFpkxnx5zuiq3u5HM5l7EGKde20Fk-Yv_uvtWzmQRgn7A1bKABZuVqpO7Yq5SyEUMYqrWHBDgfqplz6FDlGz7f42Q9jij1Gni6UcUy58JAy7-NIHxnbgXhMEVsafhnfh0CZYkecrhOOs6fcs9uAQ6HVfy7Z8fXluNlWu_3b--Z5V6FWopKAqpOq9hY644VD64OhVgYDBgmMD01TN8Zb12ppFcquBmcgwFwEAcCSPf5pLzldJyrj6ZymHOfHkwJhhJTaCvgBcFFR1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306011570</pqid></control><display><type>article</type><title>Recursion and Hamiltonian operators for integrable nonabelian difference equations</title><source>Publicly Available Content Database</source><creator>Casati, Matteo ; Wang, Jing Ping</creator><creatorcontrib>Casati, Matteo ; Wang, Jing Ping</creatorcontrib><description>In this paper, we carry out the algebraic study of integrable differential-difference equations whose field variables take values in an associative (but not commutative) algebra. We adapt the Hamiltonian formalism to nonabelian difference Laurent polynomials and describe how to obtain a recursion operator from the Lax representation of an integrable nonabelian differential-difference system. As an application, we propose a novel family of integrable equations: the nonabelian Narita-Itoh-Bogoyavlensky lattice, for which we construct their recursion operators and Hamiltonian operators and prove the locality of infinitely many commuting symmetries generated from their highly nonlocal recursion operators. Finally, we discuss the nonabelian version of several integrable difference systems, including the relativistic Toda chain and Ablowitz-Ladik lattice.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1910.06807</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Difference equations ; Differential equations ; Mathematical analysis ; Operators (mathematics) ; Polynomials</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2306011570?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,27908,36995,44573</link.rule.ids></links><search><creatorcontrib>Casati, Matteo</creatorcontrib><creatorcontrib>Wang, Jing Ping</creatorcontrib><title>Recursion and Hamiltonian operators for integrable nonabelian difference equations</title><title>arXiv.org</title><description>In this paper, we carry out the algebraic study of integrable differential-difference equations whose field variables take values in an associative (but not commutative) algebra. We adapt the Hamiltonian formalism to nonabelian difference Laurent polynomials and describe how to obtain a recursion operator from the Lax representation of an integrable nonabelian differential-difference system. As an application, we propose a novel family of integrable equations: the nonabelian Narita-Itoh-Bogoyavlensky lattice, for which we construct their recursion operators and Hamiltonian operators and prove the locality of infinitely many commuting symmetries generated from their highly nonlocal recursion operators. Finally, we discuss the nonabelian version of several integrable difference systems, including the relativistic Toda chain and Ablowitz-Ladik lattice.</description><subject>Difference equations</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEURYMgWGp_gLuA66lJ3uRjllLUCoVC6b68mbzIlDFpkxnx5zuiq3u5HM5l7EGKde20Fk-Yv_uvtWzmQRgn7A1bKABZuVqpO7Yq5SyEUMYqrWHBDgfqplz6FDlGz7f42Q9jij1Gni6UcUy58JAy7-NIHxnbgXhMEVsafhnfh0CZYkecrhOOs6fcs9uAQ6HVfy7Z8fXluNlWu_3b--Z5V6FWopKAqpOq9hY644VD64OhVgYDBgmMD01TN8Zb12ppFcquBmcgwFwEAcCSPf5pLzldJyrj6ZymHOfHkwJhhJTaCvgBcFFR1Q</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Casati, Matteo</creator><creator>Wang, Jing Ping</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200730</creationdate><title>Recursion and Hamiltonian operators for integrable nonabelian difference equations</title><author>Casati, Matteo ; Wang, Jing Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-13a2c124d73c6d08a7df6eb1f636ae36df99496d78b5172a1c43863f31c40e333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Difference equations</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Casati, Matteo</creatorcontrib><creatorcontrib>Wang, Jing Ping</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casati, Matteo</au><au>Wang, Jing Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursion and Hamiltonian operators for integrable nonabelian difference equations</atitle><jtitle>arXiv.org</jtitle><date>2020-07-30</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we carry out the algebraic study of integrable differential-difference equations whose field variables take values in an associative (but not commutative) algebra. We adapt the Hamiltonian formalism to nonabelian difference Laurent polynomials and describe how to obtain a recursion operator from the Lax representation of an integrable nonabelian differential-difference system. As an application, we propose a novel family of integrable equations: the nonabelian Narita-Itoh-Bogoyavlensky lattice, for which we construct their recursion operators and Hamiltonian operators and prove the locality of infinitely many commuting symmetries generated from their highly nonlocal recursion operators. Finally, we discuss the nonabelian version of several integrable difference systems, including the relativistic Toda chain and Ablowitz-Ladik lattice.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1910.06807</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2306011570
source Publicly Available Content Database
subjects Difference equations
Differential equations
Mathematical analysis
Operators (mathematics)
Polynomials
title Recursion and Hamiltonian operators for integrable nonabelian difference equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursion%20and%20Hamiltonian%20operators%20for%20integrable%20nonabelian%20difference%20equations&rft.jtitle=arXiv.org&rft.au=Casati,%20Matteo&rft.date=2020-07-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1910.06807&rft_dat=%3Cproquest%3E2306011570%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-13a2c124d73c6d08a7df6eb1f636ae36df99496d78b5172a1c43863f31c40e333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306011570&rft_id=info:pmid/&rfr_iscdi=true