Loading…
Recursion and Hamiltonian operators for integrable nonabelian difference equations
In this paper, we carry out the algebraic study of integrable differential-difference equations whose field variables take values in an associative (but not commutative) algebra. We adapt the Hamiltonian formalism to nonabelian difference Laurent polynomials and describe how to obtain a recursion op...
Saved in:
Published in: | arXiv.org 2020-07 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Casati, Matteo Wang, Jing Ping |
description | In this paper, we carry out the algebraic study of integrable differential-difference equations whose field variables take values in an associative (but not commutative) algebra. We adapt the Hamiltonian formalism to nonabelian difference Laurent polynomials and describe how to obtain a recursion operator from the Lax representation of an integrable nonabelian differential-difference system. As an application, we propose a novel family of integrable equations: the nonabelian Narita-Itoh-Bogoyavlensky lattice, for which we construct their recursion operators and Hamiltonian operators and prove the locality of infinitely many commuting symmetries generated from their highly nonlocal recursion operators. Finally, we discuss the nonabelian version of several integrable difference systems, including the relativistic Toda chain and Ablowitz-Ladik lattice. |
doi_str_mv | 10.48550/arxiv.1910.06807 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2306011570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306011570</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-13a2c124d73c6d08a7df6eb1f636ae36df99496d78b5172a1c43863f31c40e333</originalsourceid><addsrcrecordid>eNotjU1LAzEURYMgWGp_gLuA66lJ3uRjllLUCoVC6b68mbzIlDFpkxnx5zuiq3u5HM5l7EGKde20Fk-Yv_uvtWzmQRgn7A1bKABZuVqpO7Yq5SyEUMYqrWHBDgfqplz6FDlGz7f42Q9jij1Gni6UcUy58JAy7-NIHxnbgXhMEVsafhnfh0CZYkecrhOOs6fcs9uAQ6HVfy7Z8fXluNlWu_3b--Z5V6FWopKAqpOq9hY644VD64OhVgYDBgmMD01TN8Zb12ppFcquBmcgwFwEAcCSPf5pLzldJyrj6ZymHOfHkwJhhJTaCvgBcFFR1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306011570</pqid></control><display><type>article</type><title>Recursion and Hamiltonian operators for integrable nonabelian difference equations</title><source>Publicly Available Content Database</source><creator>Casati, Matteo ; Wang, Jing Ping</creator><creatorcontrib>Casati, Matteo ; Wang, Jing Ping</creatorcontrib><description>In this paper, we carry out the algebraic study of integrable differential-difference equations whose field variables take values in an associative (but not commutative) algebra. We adapt the Hamiltonian formalism to nonabelian difference Laurent polynomials and describe how to obtain a recursion operator from the Lax representation of an integrable nonabelian differential-difference system. As an application, we propose a novel family of integrable equations: the nonabelian Narita-Itoh-Bogoyavlensky lattice, for which we construct their recursion operators and Hamiltonian operators and prove the locality of infinitely many commuting symmetries generated from their highly nonlocal recursion operators. Finally, we discuss the nonabelian version of several integrable difference systems, including the relativistic Toda chain and Ablowitz-Ladik lattice.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1910.06807</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Difference equations ; Differential equations ; Mathematical analysis ; Operators (mathematics) ; Polynomials</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2306011570?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,27908,36995,44573</link.rule.ids></links><search><creatorcontrib>Casati, Matteo</creatorcontrib><creatorcontrib>Wang, Jing Ping</creatorcontrib><title>Recursion and Hamiltonian operators for integrable nonabelian difference equations</title><title>arXiv.org</title><description>In this paper, we carry out the algebraic study of integrable differential-difference equations whose field variables take values in an associative (but not commutative) algebra. We adapt the Hamiltonian formalism to nonabelian difference Laurent polynomials and describe how to obtain a recursion operator from the Lax representation of an integrable nonabelian differential-difference system. As an application, we propose a novel family of integrable equations: the nonabelian Narita-Itoh-Bogoyavlensky lattice, for which we construct their recursion operators and Hamiltonian operators and prove the locality of infinitely many commuting symmetries generated from their highly nonlocal recursion operators. Finally, we discuss the nonabelian version of several integrable difference systems, including the relativistic Toda chain and Ablowitz-Ladik lattice.</description><subject>Difference equations</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEURYMgWGp_gLuA66lJ3uRjllLUCoVC6b68mbzIlDFpkxnx5zuiq3u5HM5l7EGKde20Fk-Yv_uvtWzmQRgn7A1bKABZuVqpO7Yq5SyEUMYqrWHBDgfqplz6FDlGz7f42Q9jij1Gni6UcUy58JAy7-NIHxnbgXhMEVsafhnfh0CZYkecrhOOs6fcs9uAQ6HVfy7Z8fXluNlWu_3b--Z5V6FWopKAqpOq9hY644VD64OhVgYDBgmMD01TN8Zb12ppFcquBmcgwFwEAcCSPf5pLzldJyrj6ZymHOfHkwJhhJTaCvgBcFFR1Q</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Casati, Matteo</creator><creator>Wang, Jing Ping</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200730</creationdate><title>Recursion and Hamiltonian operators for integrable nonabelian difference equations</title><author>Casati, Matteo ; Wang, Jing Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-13a2c124d73c6d08a7df6eb1f636ae36df99496d78b5172a1c43863f31c40e333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Difference equations</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Casati, Matteo</creatorcontrib><creatorcontrib>Wang, Jing Ping</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casati, Matteo</au><au>Wang, Jing Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursion and Hamiltonian operators for integrable nonabelian difference equations</atitle><jtitle>arXiv.org</jtitle><date>2020-07-30</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we carry out the algebraic study of integrable differential-difference equations whose field variables take values in an associative (but not commutative) algebra. We adapt the Hamiltonian formalism to nonabelian difference Laurent polynomials and describe how to obtain a recursion operator from the Lax representation of an integrable nonabelian differential-difference system. As an application, we propose a novel family of integrable equations: the nonabelian Narita-Itoh-Bogoyavlensky lattice, for which we construct their recursion operators and Hamiltonian operators and prove the locality of infinitely many commuting symmetries generated from their highly nonlocal recursion operators. Finally, we discuss the nonabelian version of several integrable difference systems, including the relativistic Toda chain and Ablowitz-Ladik lattice.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1910.06807</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2306011570 |
source | Publicly Available Content Database |
subjects | Difference equations Differential equations Mathematical analysis Operators (mathematics) Polynomials |
title | Recursion and Hamiltonian operators for integrable nonabelian difference equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursion%20and%20Hamiltonian%20operators%20for%20integrable%20nonabelian%20difference%20equations&rft.jtitle=arXiv.org&rft.au=Casati,%20Matteo&rft.date=2020-07-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1910.06807&rft_dat=%3Cproquest%3E2306011570%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-13a2c124d73c6d08a7df6eb1f636ae36df99496d78b5172a1c43863f31c40e333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306011570&rft_id=info:pmid/&rfr_iscdi=true |