Loading…

Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity

Gravitational wave detectors (GWDs), which have brought about a new era in astronomy, have reached such a level of maturity that further improvement necessitates quantum-noise-evading techniques. Numerous proposals to this end have been discussed in the literature, e.g., invoking frequency-dependent...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2019-09, Vol.100 (6), Article 062004
Main Authors: Zeuthen, Emil, Polzik, Eugene S., Khalili, Farid Ya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673
cites cdi_FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673
container_end_page
container_issue 6
container_start_page
container_title Physical review. D
container_volume 100
creator Zeuthen, Emil
Polzik, Eugene S.
Khalili, Farid Ya
description Gravitational wave detectors (GWDs), which have brought about a new era in astronomy, have reached such a level of maturity that further improvement necessitates quantum-noise-evading techniques. Numerous proposals to this end have been discussed in the literature, e.g., invoking frequency-dependent squeezing or replacing the current Michelson interferometer topology by that of the quantum speedmeter. Recently, a proposal based on the linking of a standard interferometer to a negative-mass spin system via entangled light has offered an unintrusive and small-scale new approach to quantum noise evasion in GWDs [Phys. Rev. Lett. 121, 031101 (2018)]. The solution proposed therein does not require modifications to the highly refined core optics of the present GWD design and, when compared to previous proposals, is less prone to losses and imperfections of the interferometer. In the present article, we refine this scheme to an extent that the requirements on the auxiliary spin system are feasible with state-of-the-art implementations. This is accomplished by matching the effective (rather than intrinsic) susceptibilities of the interferometer and spin system using the virtual rigidity concept, which, in terms of implementation, requires only suitable choices of the various homodyne, probe, and squeezing phases.
doi_str_mv 10.1103/PhysRevD.100.062004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2306214164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306214164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOY-gS8Bnztv_jRdH2XqFAaK6HNJm9stY223JK3025sx9ekeDuccuD9CbhnMGQNx_74d_QcOj3MGMAfFAeQFmXCZQQLA88t_zeCazLzfQZQK8oyxCelXTg826GC7Vu_ptx6QGgxYnQxa4ti1hoYtUh90a7Qz9NjrNvQN3dvGBtp7226opi1u4saASaO9p_5gW-pHH7ChsUYH60If553dWGPDeEOuar33OPu9U_L1_PS5fEnWb6vX5cM6qXiWhaTKjcpTFJVaiDwtlZS8ljIzi1LWxlR1agzjUsuyrJRWpeFSaEgl1nlVIqpMTMndeffgumOPPhS7rnfxUV9wEVExyZSMKXFOVa7z3mFdHJxttBsLBsUJcfGHOBpQnBGLHyYsc9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306214164</pqid></control><display><type>article</type><title>Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Zeuthen, Emil ; Polzik, Eugene S. ; Khalili, Farid Ya</creator><creatorcontrib>Zeuthen, Emil ; Polzik, Eugene S. ; Khalili, Farid Ya</creatorcontrib><description>Gravitational wave detectors (GWDs), which have brought about a new era in astronomy, have reached such a level of maturity that further improvement necessitates quantum-noise-evading techniques. Numerous proposals to this end have been discussed in the literature, e.g., invoking frequency-dependent squeezing or replacing the current Michelson interferometer topology by that of the quantum speedmeter. Recently, a proposal based on the linking of a standard interferometer to a negative-mass spin system via entangled light has offered an unintrusive and small-scale new approach to quantum noise evasion in GWDs [Phys. Rev. Lett. 121, 031101 (2018)]. The solution proposed therein does not require modifications to the highly refined core optics of the present GWD design and, when compared to previous proposals, is less prone to losses and imperfections of the interferometer. In the present article, we refine this scheme to an extent that the requirements on the auxiliary spin system are feasible with state-of-the-art implementations. This is accomplished by matching the effective (rather than intrinsic) susceptibilities of the interferometer and spin system using the virtual rigidity concept, which, in terms of implementation, requires only suitable choices of the various homodyne, probe, and squeezing phases.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.100.062004</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Astronomy ; Compressing ; Gravitation ; Gravitational waves ; Michelson interferometers ; Proposals ; Rigidity ; Topology</subject><ispartof>Physical review. D, 2019-09, Vol.100 (6), Article 062004</ispartof><rights>Copyright American Physical Society Sep 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673</citedby><cites>FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673</cites><orcidid>0000-0002-1206-6862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zeuthen, Emil</creatorcontrib><creatorcontrib>Polzik, Eugene S.</creatorcontrib><creatorcontrib>Khalili, Farid Ya</creatorcontrib><title>Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity</title><title>Physical review. D</title><description>Gravitational wave detectors (GWDs), which have brought about a new era in astronomy, have reached such a level of maturity that further improvement necessitates quantum-noise-evading techniques. Numerous proposals to this end have been discussed in the literature, e.g., invoking frequency-dependent squeezing or replacing the current Michelson interferometer topology by that of the quantum speedmeter. Recently, a proposal based on the linking of a standard interferometer to a negative-mass spin system via entangled light has offered an unintrusive and small-scale new approach to quantum noise evasion in GWDs [Phys. Rev. Lett. 121, 031101 (2018)]. The solution proposed therein does not require modifications to the highly refined core optics of the present GWD design and, when compared to previous proposals, is less prone to losses and imperfections of the interferometer. In the present article, we refine this scheme to an extent that the requirements on the auxiliary spin system are feasible with state-of-the-art implementations. This is accomplished by matching the effective (rather than intrinsic) susceptibilities of the interferometer and spin system using the virtual rigidity concept, which, in terms of implementation, requires only suitable choices of the various homodyne, probe, and squeezing phases.</description><subject>Astronomy</subject><subject>Compressing</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Michelson interferometers</subject><subject>Proposals</subject><subject>Rigidity</subject><subject>Topology</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOY-gS8Bnztv_jRdH2XqFAaK6HNJm9stY223JK3025sx9ekeDuccuD9CbhnMGQNx_74d_QcOj3MGMAfFAeQFmXCZQQLA88t_zeCazLzfQZQK8oyxCelXTg826GC7Vu_ptx6QGgxYnQxa4ti1hoYtUh90a7Qz9NjrNvQN3dvGBtp7226opi1u4saASaO9p_5gW-pHH7ChsUYH60If553dWGPDeEOuar33OPu9U_L1_PS5fEnWb6vX5cM6qXiWhaTKjcpTFJVaiDwtlZS8ljIzi1LWxlR1agzjUsuyrJRWpeFSaEgl1nlVIqpMTMndeffgumOPPhS7rnfxUV9wEVExyZSMKXFOVa7z3mFdHJxttBsLBsUJcfGHOBpQnBGLHyYsc9o</recordid><startdate>20190923</startdate><enddate>20190923</enddate><creator>Zeuthen, Emil</creator><creator>Polzik, Eugene S.</creator><creator>Khalili, Farid Ya</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1206-6862</orcidid></search><sort><creationdate>20190923</creationdate><title>Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity</title><author>Zeuthen, Emil ; Polzik, Eugene S. ; Khalili, Farid Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomy</topic><topic>Compressing</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Michelson interferometers</topic><topic>Proposals</topic><topic>Rigidity</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeuthen, Emil</creatorcontrib><creatorcontrib>Polzik, Eugene S.</creatorcontrib><creatorcontrib>Khalili, Farid Ya</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeuthen, Emil</au><au>Polzik, Eugene S.</au><au>Khalili, Farid Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity</atitle><jtitle>Physical review. D</jtitle><date>2019-09-23</date><risdate>2019</risdate><volume>100</volume><issue>6</issue><artnum>062004</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Gravitational wave detectors (GWDs), which have brought about a new era in astronomy, have reached such a level of maturity that further improvement necessitates quantum-noise-evading techniques. Numerous proposals to this end have been discussed in the literature, e.g., invoking frequency-dependent squeezing or replacing the current Michelson interferometer topology by that of the quantum speedmeter. Recently, a proposal based on the linking of a standard interferometer to a negative-mass spin system via entangled light has offered an unintrusive and small-scale new approach to quantum noise evasion in GWDs [Phys. Rev. Lett. 121, 031101 (2018)]. The solution proposed therein does not require modifications to the highly refined core optics of the present GWD design and, when compared to previous proposals, is less prone to losses and imperfections of the interferometer. In the present article, we refine this scheme to an extent that the requirements on the auxiliary spin system are feasible with state-of-the-art implementations. This is accomplished by matching the effective (rather than intrinsic) susceptibilities of the interferometer and spin system using the virtual rigidity concept, which, in terms of implementation, requires only suitable choices of the various homodyne, probe, and squeezing phases.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.100.062004</doi><orcidid>https://orcid.org/0000-0002-1206-6862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2019-09, Vol.100 (6), Article 062004
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2306214164
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Astronomy
Compressing
Gravitation
Gravitational waves
Michelson interferometers
Proposals
Rigidity
Topology
title Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20wave%20detection%20beyond%20the%20standard%20quantum%20limit%20using%20a%20negative-mass%20spin%20system%20and%20virtual%20rigidity&rft.jtitle=Physical%20review.%20D&rft.au=Zeuthen,%20Emil&rft.date=2019-09-23&rft.volume=100&rft.issue=6&rft.artnum=062004&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.100.062004&rft_dat=%3Cproquest_cross%3E2306214164%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306214164&rft_id=info:pmid/&rfr_iscdi=true