Loading…
Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity
Gravitational wave detectors (GWDs), which have brought about a new era in astronomy, have reached such a level of maturity that further improvement necessitates quantum-noise-evading techniques. Numerous proposals to this end have been discussed in the literature, e.g., invoking frequency-dependent...
Saved in:
Published in: | Physical review. D 2019-09, Vol.100 (6), Article 062004 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673 |
---|---|
cites | cdi_FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673 |
container_end_page | |
container_issue | 6 |
container_start_page | |
container_title | Physical review. D |
container_volume | 100 |
creator | Zeuthen, Emil Polzik, Eugene S. Khalili, Farid Ya |
description | Gravitational wave detectors (GWDs), which have brought about a new era in astronomy, have reached such a level of maturity that further improvement necessitates quantum-noise-evading techniques. Numerous proposals to this end have been discussed in the literature, e.g., invoking frequency-dependent squeezing or replacing the current Michelson interferometer topology by that of the quantum speedmeter. Recently, a proposal based on the linking of a standard interferometer to a negative-mass spin system via entangled light has offered an unintrusive and small-scale new approach to quantum noise evasion in GWDs [Phys. Rev. Lett. 121, 031101 (2018)]. The solution proposed therein does not require modifications to the highly refined core optics of the present GWD design and, when compared to previous proposals, is less prone to losses and imperfections of the interferometer. In the present article, we refine this scheme to an extent that the requirements on the auxiliary spin system are feasible with state-of-the-art implementations. This is accomplished by matching the effective (rather than intrinsic) susceptibilities of the interferometer and spin system using the virtual rigidity concept, which, in terms of implementation, requires only suitable choices of the various homodyne, probe, and squeezing phases. |
doi_str_mv | 10.1103/PhysRevD.100.062004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2306214164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306214164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOOY-gS8Bnztv_jRdH2XqFAaK6HNJm9stY223JK3025sx9ekeDuccuD9CbhnMGQNx_74d_QcOj3MGMAfFAeQFmXCZQQLA88t_zeCazLzfQZQK8oyxCelXTg826GC7Vu_ptx6QGgxYnQxa4ti1hoYtUh90a7Qz9NjrNvQN3dvGBtp7226opi1u4saASaO9p_5gW-pHH7ChsUYH60If553dWGPDeEOuar33OPu9U_L1_PS5fEnWb6vX5cM6qXiWhaTKjcpTFJVaiDwtlZS8ljIzi1LWxlR1agzjUsuyrJRWpeFSaEgl1nlVIqpMTMndeffgumOPPhS7rnfxUV9wEVExyZSMKXFOVa7z3mFdHJxttBsLBsUJcfGHOBpQnBGLHyYsc9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306214164</pqid></control><display><type>article</type><title>Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Zeuthen, Emil ; Polzik, Eugene S. ; Khalili, Farid Ya</creator><creatorcontrib>Zeuthen, Emil ; Polzik, Eugene S. ; Khalili, Farid Ya</creatorcontrib><description>Gravitational wave detectors (GWDs), which have brought about a new era in astronomy, have reached such a level of maturity that further improvement necessitates quantum-noise-evading techniques. Numerous proposals to this end have been discussed in the literature, e.g., invoking frequency-dependent squeezing or replacing the current Michelson interferometer topology by that of the quantum speedmeter. Recently, a proposal based on the linking of a standard interferometer to a negative-mass spin system via entangled light has offered an unintrusive and small-scale new approach to quantum noise evasion in GWDs [Phys. Rev. Lett. 121, 031101 (2018)]. The solution proposed therein does not require modifications to the highly refined core optics of the present GWD design and, when compared to previous proposals, is less prone to losses and imperfections of the interferometer. In the present article, we refine this scheme to an extent that the requirements on the auxiliary spin system are feasible with state-of-the-art implementations. This is accomplished by matching the effective (rather than intrinsic) susceptibilities of the interferometer and spin system using the virtual rigidity concept, which, in terms of implementation, requires only suitable choices of the various homodyne, probe, and squeezing phases.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.100.062004</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Astronomy ; Compressing ; Gravitation ; Gravitational waves ; Michelson interferometers ; Proposals ; Rigidity ; Topology</subject><ispartof>Physical review. D, 2019-09, Vol.100 (6), Article 062004</ispartof><rights>Copyright American Physical Society Sep 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673</citedby><cites>FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673</cites><orcidid>0000-0002-1206-6862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zeuthen, Emil</creatorcontrib><creatorcontrib>Polzik, Eugene S.</creatorcontrib><creatorcontrib>Khalili, Farid Ya</creatorcontrib><title>Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity</title><title>Physical review. D</title><description>Gravitational wave detectors (GWDs), which have brought about a new era in astronomy, have reached such a level of maturity that further improvement necessitates quantum-noise-evading techniques. Numerous proposals to this end have been discussed in the literature, e.g., invoking frequency-dependent squeezing or replacing the current Michelson interferometer topology by that of the quantum speedmeter. Recently, a proposal based on the linking of a standard interferometer to a negative-mass spin system via entangled light has offered an unintrusive and small-scale new approach to quantum noise evasion in GWDs [Phys. Rev. Lett. 121, 031101 (2018)]. The solution proposed therein does not require modifications to the highly refined core optics of the present GWD design and, when compared to previous proposals, is less prone to losses and imperfections of the interferometer. In the present article, we refine this scheme to an extent that the requirements on the auxiliary spin system are feasible with state-of-the-art implementations. This is accomplished by matching the effective (rather than intrinsic) susceptibilities of the interferometer and spin system using the virtual rigidity concept, which, in terms of implementation, requires only suitable choices of the various homodyne, probe, and squeezing phases.</description><subject>Astronomy</subject><subject>Compressing</subject><subject>Gravitation</subject><subject>Gravitational waves</subject><subject>Michelson interferometers</subject><subject>Proposals</subject><subject>Rigidity</subject><subject>Topology</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMoOOY-gS8Bnztv_jRdH2XqFAaK6HNJm9stY223JK3025sx9ekeDuccuD9CbhnMGQNx_74d_QcOj3MGMAfFAeQFmXCZQQLA88t_zeCazLzfQZQK8oyxCelXTg826GC7Vu_ptx6QGgxYnQxa4ti1hoYtUh90a7Qz9NjrNvQN3dvGBtp7226opi1u4saASaO9p_5gW-pHH7ChsUYH60If553dWGPDeEOuar33OPu9U_L1_PS5fEnWb6vX5cM6qXiWhaTKjcpTFJVaiDwtlZS8ljIzi1LWxlR1agzjUsuyrJRWpeFSaEgl1nlVIqpMTMndeffgumOPPhS7rnfxUV9wEVExyZSMKXFOVa7z3mFdHJxttBsLBsUJcfGHOBpQnBGLHyYsc9o</recordid><startdate>20190923</startdate><enddate>20190923</enddate><creator>Zeuthen, Emil</creator><creator>Polzik, Eugene S.</creator><creator>Khalili, Farid Ya</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1206-6862</orcidid></search><sort><creationdate>20190923</creationdate><title>Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity</title><author>Zeuthen, Emil ; Polzik, Eugene S. ; Khalili, Farid Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomy</topic><topic>Compressing</topic><topic>Gravitation</topic><topic>Gravitational waves</topic><topic>Michelson interferometers</topic><topic>Proposals</topic><topic>Rigidity</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeuthen, Emil</creatorcontrib><creatorcontrib>Polzik, Eugene S.</creatorcontrib><creatorcontrib>Khalili, Farid Ya</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeuthen, Emil</au><au>Polzik, Eugene S.</au><au>Khalili, Farid Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity</atitle><jtitle>Physical review. D</jtitle><date>2019-09-23</date><risdate>2019</risdate><volume>100</volume><issue>6</issue><artnum>062004</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>Gravitational wave detectors (GWDs), which have brought about a new era in astronomy, have reached such a level of maturity that further improvement necessitates quantum-noise-evading techniques. Numerous proposals to this end have been discussed in the literature, e.g., invoking frequency-dependent squeezing or replacing the current Michelson interferometer topology by that of the quantum speedmeter. Recently, a proposal based on the linking of a standard interferometer to a negative-mass spin system via entangled light has offered an unintrusive and small-scale new approach to quantum noise evasion in GWDs [Phys. Rev. Lett. 121, 031101 (2018)]. The solution proposed therein does not require modifications to the highly refined core optics of the present GWD design and, when compared to previous proposals, is less prone to losses and imperfections of the interferometer. In the present article, we refine this scheme to an extent that the requirements on the auxiliary spin system are feasible with state-of-the-art implementations. This is accomplished by matching the effective (rather than intrinsic) susceptibilities of the interferometer and spin system using the virtual rigidity concept, which, in terms of implementation, requires only suitable choices of the various homodyne, probe, and squeezing phases.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.100.062004</doi><orcidid>https://orcid.org/0000-0002-1206-6862</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2019-09, Vol.100 (6), Article 062004 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2306214164 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Astronomy Compressing Gravitation Gravitational waves Michelson interferometers Proposals Rigidity Topology |
title | Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A52%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20wave%20detection%20beyond%20the%20standard%20quantum%20limit%20using%20a%20negative-mass%20spin%20system%20and%20virtual%20rigidity&rft.jtitle=Physical%20review.%20D&rft.au=Zeuthen,%20Emil&rft.date=2019-09-23&rft.volume=100&rft.issue=6&rft.artnum=062004&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.100.062004&rft_dat=%3Cproquest_cross%3E2306214164%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-c9d695e3c68395b6442f447d8b4fddcf5dd124a4bbc6a6bd243a054ef9cbee673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306214164&rft_id=info:pmid/&rfr_iscdi=true |