Loading…
Regression-assisted inference for the average treatment effect in paired experiments
In paired randomized experiments, individuals in a given matched pair may differ on prognostically important covariates despite the best efforts of practitioners. We examine the use of regression adjustment to correct for persistent covariate imbalances after randomization, and present two regressio...
Saved in:
Published in: | Biometrika 2018-12, Vol.105 (4), p.994-1000 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423 |
container_end_page | 1000 |
container_issue | 4 |
container_start_page | 994 |
container_title | Biometrika |
container_volume | 105 |
creator | FOGARTY, COLIN B. |
description | In paired randomized experiments, individuals in a given matched pair may differ on prognostically important covariates despite the best efforts of practitioners. We examine the use of regression adjustment to correct for persistent covariate imbalances after randomization, and present two regression-assisted estimators for the sample average treatment effect in paired experiments. Using the potential outcomes framework, we prove that these estimators are consistent for the sample average treatment effect under mild regularity conditions even if the regression model is improperly specified, and describe how asymptotically conservative confidence intervals can be constructed. We demonstrate that the variances of the regression-assisted estimators are no larger than that of the standard difference-in-means estimator asymptotically, and illustrate the proposed methods by simulation. The analysis does not require a superpopulation model, a constant treatment effect, or the truth of the regression model, and hence provides inference for the sample average treatment effect with the potential to increase power without unrealistic assumptions. |
doi_str_mv | 10.1093/biomet/asy034 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2306239278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48546363</jstor_id><oup_id>10.1093/biomet/asy034</oup_id><sourcerecordid>48546363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AgCs7p0aNQ8OIlLk1eY3KU4VQYCDLPIW1fZodrapKJ-_ZmVLxKDo-Q33t5_Am5LNltybSY1Z3fYprZuGcCjsikBAlUVCU7JhPGmKQCAE7JWYybw1VWckJWr7gOGGPne2pziQnbousdBuwbLJwPRXrHwn5hsGssUkCbttinAp3DJmVaDLYLuQm_Bwzd4S2ekxNnPyJe_NYpeVs8rOZPdPny-Dy_X9JGVDpRANR126q8imZcAZS2qaVTmol8VEa8RVWrUjSguHSi1iCVQo3aNRVwMSXX49wh-M8dxmQ2fhf6_KXhgkkuNL9TWdFRNcHHGNCZIe9pw96UzByCM2NwZgwu-5vR-93wL70a6SYmH_4wqAqkkEL8AHc_etY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306239278</pqid></control><display><type>article</type><title>Regression-assisted inference for the average treatment effect in paired experiments</title><source>Oxford Journals Online</source><source>JSTOR</source><creator>FOGARTY, COLIN B.</creator><creatorcontrib>FOGARTY, COLIN B.</creatorcontrib><description>In paired randomized experiments, individuals in a given matched pair may differ on prognostically important covariates despite the best efforts of practitioners. We examine the use of regression adjustment to correct for persistent covariate imbalances after randomization, and present two regression-assisted estimators for the sample average treatment effect in paired experiments. Using the potential outcomes framework, we prove that these estimators are consistent for the sample average treatment effect under mild regularity conditions even if the regression model is improperly specified, and describe how asymptotically conservative confidence intervals can be constructed. We demonstrate that the variances of the regression-assisted estimators are no larger than that of the standard difference-in-means estimator asymptotically, and illustrate the proposed methods by simulation. The analysis does not require a superpopulation model, a constant treatment effect, or the truth of the regression model, and hence provides inference for the sample average treatment effect with the potential to increase power without unrealistic assumptions.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asy034</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Asymptotic methods ; Asymptotic properties ; Computer simulation ; Confidence intervals ; Estimators ; Experiments ; Inference ; Miscellanea ; Randomization ; Regression analysis ; Regression models ; Statistical analysis</subject><ispartof>Biometrika, 2018-12, Vol.105 (4), p.994-1000</ispartof><rights>2018 Biometrika Trust</rights><rights>2018 Biometrika Trust 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423</citedby><cites>FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48546363$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48546363$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids></links><search><creatorcontrib>FOGARTY, COLIN B.</creatorcontrib><title>Regression-assisted inference for the average treatment effect in paired experiments</title><title>Biometrika</title><description>In paired randomized experiments, individuals in a given matched pair may differ on prognostically important covariates despite the best efforts of practitioners. We examine the use of regression adjustment to correct for persistent covariate imbalances after randomization, and present two regression-assisted estimators for the sample average treatment effect in paired experiments. Using the potential outcomes framework, we prove that these estimators are consistent for the sample average treatment effect under mild regularity conditions even if the regression model is improperly specified, and describe how asymptotically conservative confidence intervals can be constructed. We demonstrate that the variances of the regression-assisted estimators are no larger than that of the standard difference-in-means estimator asymptotically, and illustrate the proposed methods by simulation. The analysis does not require a superpopulation model, a constant treatment effect, or the truth of the regression model, and hence provides inference for the sample average treatment effect with the potential to increase power without unrealistic assumptions.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Estimators</subject><subject>Experiments</subject><subject>Inference</subject><subject>Miscellanea</subject><subject>Randomization</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqF0EFLwzAUB_AgCs7p0aNQ8OIlLk1eY3KU4VQYCDLPIW1fZodrapKJ-_ZmVLxKDo-Q33t5_Am5LNltybSY1Z3fYprZuGcCjsikBAlUVCU7JhPGmKQCAE7JWYybw1VWckJWr7gOGGPne2pziQnbousdBuwbLJwPRXrHwn5hsGssUkCbttinAp3DJmVaDLYLuQm_Bwzd4S2ekxNnPyJe_NYpeVs8rOZPdPny-Dy_X9JGVDpRANR126q8imZcAZS2qaVTmol8VEa8RVWrUjSguHSi1iCVQo3aNRVwMSXX49wh-M8dxmQ2fhf6_KXhgkkuNL9TWdFRNcHHGNCZIe9pw96UzByCM2NwZgwu-5vR-93wL70a6SYmH_4wqAqkkEL8AHc_etY</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>FOGARTY, COLIN B.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20181201</creationdate><title>Regression-assisted inference for the average treatment effect in paired experiments</title><author>FOGARTY, COLIN B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Estimators</topic><topic>Experiments</topic><topic>Inference</topic><topic>Miscellanea</topic><topic>Randomization</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FOGARTY, COLIN B.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FOGARTY, COLIN B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regression-assisted inference for the average treatment effect in paired experiments</atitle><jtitle>Biometrika</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>105</volume><issue>4</issue><spage>994</spage><epage>1000</epage><pages>994-1000</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>In paired randomized experiments, individuals in a given matched pair may differ on prognostically important covariates despite the best efforts of practitioners. We examine the use of regression adjustment to correct for persistent covariate imbalances after randomization, and present two regression-assisted estimators for the sample average treatment effect in paired experiments. Using the potential outcomes framework, we prove that these estimators are consistent for the sample average treatment effect under mild regularity conditions even if the regression model is improperly specified, and describe how asymptotically conservative confidence intervals can be constructed. We demonstrate that the variances of the regression-assisted estimators are no larger than that of the standard difference-in-means estimator asymptotically, and illustrate the proposed methods by simulation. The analysis does not require a superpopulation model, a constant treatment effect, or the truth of the regression model, and hence provides inference for the sample average treatment effect with the potential to increase power without unrealistic assumptions.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asy034</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2018-12, Vol.105 (4), p.994-1000 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_2306239278 |
source | Oxford Journals Online; JSTOR |
subjects | Asymptotic methods Asymptotic properties Computer simulation Confidence intervals Estimators Experiments Inference Miscellanea Randomization Regression analysis Regression models Statistical analysis |
title | Regression-assisted inference for the average treatment effect in paired experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regression-assisted%20inference%20for%20the%20average%20treatment%20effect%20in%20paired%20experiments&rft.jtitle=Biometrika&rft.au=FOGARTY,%20COLIN%20B.&rft.date=2018-12-01&rft.volume=105&rft.issue=4&rft.spage=994&rft.epage=1000&rft.pages=994-1000&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asy034&rft_dat=%3Cjstor_proqu%3E48546363%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306239278&rft_id=info:pmid/&rft_jstor_id=48546363&rft_oup_id=10.1093/biomet/asy034&rfr_iscdi=true |