Loading…

Regression-assisted inference for the average treatment effect in paired experiments

In paired randomized experiments, individuals in a given matched pair may differ on prognostically important covariates despite the best efforts of practitioners. We examine the use of regression adjustment to correct for persistent covariate imbalances after randomization, and present two regressio...

Full description

Saved in:
Bibliographic Details
Published in:Biometrika 2018-12, Vol.105 (4), p.994-1000
Main Author: FOGARTY, COLIN B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423
cites cdi_FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423
container_end_page 1000
container_issue 4
container_start_page 994
container_title Biometrika
container_volume 105
creator FOGARTY, COLIN B.
description In paired randomized experiments, individuals in a given matched pair may differ on prognostically important covariates despite the best efforts of practitioners. We examine the use of regression adjustment to correct for persistent covariate imbalances after randomization, and present two regression-assisted estimators for the sample average treatment effect in paired experiments. Using the potential outcomes framework, we prove that these estimators are consistent for the sample average treatment effect under mild regularity conditions even if the regression model is improperly specified, and describe how asymptotically conservative confidence intervals can be constructed. We demonstrate that the variances of the regression-assisted estimators are no larger than that of the standard difference-in-means estimator asymptotically, and illustrate the proposed methods by simulation. The analysis does not require a superpopulation model, a constant treatment effect, or the truth of the regression model, and hence provides inference for the sample average treatment effect with the potential to increase power without unrealistic assumptions.
doi_str_mv 10.1093/biomet/asy034
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2306239278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48546363</jstor_id><oup_id>10.1093/biomet/asy034</oup_id><sourcerecordid>48546363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AgCs7p0aNQ8OIlLk1eY3KU4VQYCDLPIW1fZodrapKJ-_ZmVLxKDo-Q33t5_Am5LNltybSY1Z3fYprZuGcCjsikBAlUVCU7JhPGmKQCAE7JWYybw1VWckJWr7gOGGPne2pziQnbousdBuwbLJwPRXrHwn5hsGssUkCbttinAp3DJmVaDLYLuQm_Bwzd4S2ekxNnPyJe_NYpeVs8rOZPdPny-Dy_X9JGVDpRANR126q8imZcAZS2qaVTmol8VEa8RVWrUjSguHSi1iCVQo3aNRVwMSXX49wh-M8dxmQ2fhf6_KXhgkkuNL9TWdFRNcHHGNCZIe9pw96UzByCM2NwZgwu-5vR-93wL70a6SYmH_4wqAqkkEL8AHc_etY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306239278</pqid></control><display><type>article</type><title>Regression-assisted inference for the average treatment effect in paired experiments</title><source>Oxford Journals Online</source><source>JSTOR</source><creator>FOGARTY, COLIN B.</creator><creatorcontrib>FOGARTY, COLIN B.</creatorcontrib><description>In paired randomized experiments, individuals in a given matched pair may differ on prognostically important covariates despite the best efforts of practitioners. We examine the use of regression adjustment to correct for persistent covariate imbalances after randomization, and present two regression-assisted estimators for the sample average treatment effect in paired experiments. Using the potential outcomes framework, we prove that these estimators are consistent for the sample average treatment effect under mild regularity conditions even if the regression model is improperly specified, and describe how asymptotically conservative confidence intervals can be constructed. We demonstrate that the variances of the regression-assisted estimators are no larger than that of the standard difference-in-means estimator asymptotically, and illustrate the proposed methods by simulation. The analysis does not require a superpopulation model, a constant treatment effect, or the truth of the regression model, and hence provides inference for the sample average treatment effect with the potential to increase power without unrealistic assumptions.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asy034</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Asymptotic methods ; Asymptotic properties ; Computer simulation ; Confidence intervals ; Estimators ; Experiments ; Inference ; Miscellanea ; Randomization ; Regression analysis ; Regression models ; Statistical analysis</subject><ispartof>Biometrika, 2018-12, Vol.105 (4), p.994-1000</ispartof><rights>2018 Biometrika Trust</rights><rights>2018 Biometrika Trust 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423</citedby><cites>FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48546363$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48546363$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,58236,58469</link.rule.ids></links><search><creatorcontrib>FOGARTY, COLIN B.</creatorcontrib><title>Regression-assisted inference for the average treatment effect in paired experiments</title><title>Biometrika</title><description>In paired randomized experiments, individuals in a given matched pair may differ on prognostically important covariates despite the best efforts of practitioners. We examine the use of regression adjustment to correct for persistent covariate imbalances after randomization, and present two regression-assisted estimators for the sample average treatment effect in paired experiments. Using the potential outcomes framework, we prove that these estimators are consistent for the sample average treatment effect under mild regularity conditions even if the regression model is improperly specified, and describe how asymptotically conservative confidence intervals can be constructed. We demonstrate that the variances of the regression-assisted estimators are no larger than that of the standard difference-in-means estimator asymptotically, and illustrate the proposed methods by simulation. The analysis does not require a superpopulation model, a constant treatment effect, or the truth of the regression model, and hence provides inference for the sample average treatment effect with the potential to increase power without unrealistic assumptions.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Estimators</subject><subject>Experiments</subject><subject>Inference</subject><subject>Miscellanea</subject><subject>Randomization</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqF0EFLwzAUB_AgCs7p0aNQ8OIlLk1eY3KU4VQYCDLPIW1fZodrapKJ-_ZmVLxKDo-Q33t5_Am5LNltybSY1Z3fYprZuGcCjsikBAlUVCU7JhPGmKQCAE7JWYybw1VWckJWr7gOGGPne2pziQnbousdBuwbLJwPRXrHwn5hsGssUkCbttinAp3DJmVaDLYLuQm_Bwzd4S2ekxNnPyJe_NYpeVs8rOZPdPny-Dy_X9JGVDpRANR126q8imZcAZS2qaVTmol8VEa8RVWrUjSguHSi1iCVQo3aNRVwMSXX49wh-M8dxmQ2fhf6_KXhgkkuNL9TWdFRNcHHGNCZIe9pw96UzByCM2NwZgwu-5vR-93wL70a6SYmH_4wqAqkkEL8AHc_etY</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>FOGARTY, COLIN B.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20181201</creationdate><title>Regression-assisted inference for the average treatment effect in paired experiments</title><author>FOGARTY, COLIN B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Estimators</topic><topic>Experiments</topic><topic>Inference</topic><topic>Miscellanea</topic><topic>Randomization</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FOGARTY, COLIN B.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FOGARTY, COLIN B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regression-assisted inference for the average treatment effect in paired experiments</atitle><jtitle>Biometrika</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>105</volume><issue>4</issue><spage>994</spage><epage>1000</epage><pages>994-1000</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>In paired randomized experiments, individuals in a given matched pair may differ on prognostically important covariates despite the best efforts of practitioners. We examine the use of regression adjustment to correct for persistent covariate imbalances after randomization, and present two regression-assisted estimators for the sample average treatment effect in paired experiments. Using the potential outcomes framework, we prove that these estimators are consistent for the sample average treatment effect under mild regularity conditions even if the regression model is improperly specified, and describe how asymptotically conservative confidence intervals can be constructed. We demonstrate that the variances of the regression-assisted estimators are no larger than that of the standard difference-in-means estimator asymptotically, and illustrate the proposed methods by simulation. The analysis does not require a superpopulation model, a constant treatment effect, or the truth of the regression model, and hence provides inference for the sample average treatment effect with the potential to increase power without unrealistic assumptions.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/biomet/asy034</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2018-12, Vol.105 (4), p.994-1000
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_2306239278
source Oxford Journals Online; JSTOR
subjects Asymptotic methods
Asymptotic properties
Computer simulation
Confidence intervals
Estimators
Experiments
Inference
Miscellanea
Randomization
Regression analysis
Regression models
Statistical analysis
title Regression-assisted inference for the average treatment effect in paired experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regression-assisted%20inference%20for%20the%20average%20treatment%20effect%20in%20paired%20experiments&rft.jtitle=Biometrika&rft.au=FOGARTY,%20COLIN%20B.&rft.date=2018-12-01&rft.volume=105&rft.issue=4&rft.spage=994&rft.epage=1000&rft.pages=994-1000&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asy034&rft_dat=%3Cjstor_proqu%3E48546363%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-44e9bdd80669028441acb6f89030308c352de8b813c4826f3b94688e9e9fc5423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306239278&rft_id=info:pmid/&rft_jstor_id=48546363&rft_oup_id=10.1093/biomet/asy034&rfr_iscdi=true