Loading…

Feedback compensated 10 kW solid-state pulsed power amplifier at 352 MHz for particle accelerators

This paper presents the first results of an in-house developed low-level radio frequency (LLRF) system and a 10 kW solid state power amplifier (SSPA). The design approach for the SSPA is based on eight resonant single-ended kilowatt modules combined using a planar Gysel combiner. Each of the single-...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2019-10, Vol.90 (10)
Main Authors: Duc, L. Hoang, Jobs, M., Lofnes, T., Ruber, R., Olsson, J., Dancila, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-fe945776fa3902086507304c39ef672663143d93adee9991a83fa22d402f6c443
cites cdi_FETCH-LOGICAL-c399t-fe945776fa3902086507304c39ef672663143d93adee9991a83fa22d402f6c443
container_end_page
container_issue 10
container_start_page
container_title Review of scientific instruments
container_volume 90
creator Duc, L. Hoang
Jobs, M.
Lofnes, T.
Ruber, R.
Olsson, J.
Dancila, D.
description This paper presents the first results of an in-house developed low-level radio frequency (LLRF) system and a 10 kW solid state power amplifier (SSPA). The design approach for the SSPA is based on eight resonant single-ended kilowatt modules combined using a planar Gysel combiner. Each of the single-ended modules is based on a two-stepped impedance resonant matching, allowing for harmonic suppression, simple design for massive production, and high-performance design. A design methodology to tune SSPA modules for optimum combining efficiency is presented thoroughly in the time domain. We characterize the power droop due to capacitor banks in the time domain. In open loop of compensation, it is about 1 kW within the pulse of peak value 10 kW and a duration of 3.5 ms. This may lead to the beam instability of the accelerator as particles are not provided with the same energy during the pulse. By incorporating our LLRF system, it is demonstrated that the objective of amplitude and phase stability is satisfied, as required in the European Spallation Source proton accelerator. The presented design also offers the advantages of compact form factor, low complexity, and better performance. In closed loop compensation, the variation of amplitude (pulse droop) is measured on the order of 20 W, which is equivalent to 0.2% at 10 kW peak output power.
doi_str_mv 10.1063/1.5110981
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2306343021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306343021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-fe945776fa3902086507304c39ef672663143d93adee9991a83fa22d402f6c443</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk-LWfDW7OZZqrVDx4scxpNlE0m6bmOxa9Neb0qJ35zLDzPO-DC8A5xgNMOL0Bg-GGCNR4QPQw6gSRckJPQQ9hCgreMmqY3CS0gLlymAPzCfG1HOll1D7VTDrpFpTQ4zg8g0m37i6SG1ewdA1KR-C35gI1So0zrrt1EI6JPBx-g2tjzCo2DrdGKi0No2JqvUxnYIjq7L6bN_74GVy9zyeFrOn-4fxaFZoKkRbWCPYsCy5VVQggio-RCVFLB-N5SXhnGJGa0FVbYwQAquKWkVIzRCxXDNG--B655s2JnRzGaJbqfglvXLy1r2OpI_vsutkFnDMM36xw0P0H51JrVz4Lq7zh5LQHCWjiOBMXe4oHX1K0dhfW4zkNnGJ5T7xzF7tH9Auh-b8-n_wp49_oAy1pT81t4zZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306343021</pqid></control><display><type>article</type><title>Feedback compensated 10 kW solid-state pulsed power amplifier at 352 MHz for particle accelerators</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Duc, L. Hoang ; Jobs, M. ; Lofnes, T. ; Ruber, R. ; Olsson, J. ; Dancila, D.</creator><creatorcontrib>Duc, L. Hoang ; Jobs, M. ; Lofnes, T. ; Ruber, R. ; Olsson, J. ; Dancila, D.</creatorcontrib><description>This paper presents the first results of an in-house developed low-level radio frequency (LLRF) system and a 10 kW solid state power amplifier (SSPA). The design approach for the SSPA is based on eight resonant single-ended kilowatt modules combined using a planar Gysel combiner. Each of the single-ended modules is based on a two-stepped impedance resonant matching, allowing for harmonic suppression, simple design for massive production, and high-performance design. A design methodology to tune SSPA modules for optimum combining efficiency is presented thoroughly in the time domain. We characterize the power droop due to capacitor banks in the time domain. In open loop of compensation, it is about 1 kW within the pulse of peak value 10 kW and a duration of 3.5 ms. This may lead to the beam instability of the accelerator as particles are not provided with the same energy during the pulse. By incorporating our LLRF system, it is demonstrated that the objective of amplitude and phase stability is satisfied, as required in the European Spallation Source proton accelerator. The presented design also offers the advantages of compact form factor, low complexity, and better performance. In closed loop compensation, the variation of amplitude (pulse droop) is measured on the order of 20 W, which is equivalent to 0.2% at 10 kW peak output power.</description><identifier>ISSN: 0034-6748</identifier><identifier>ISSN: 1089-7623</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.5110981</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplifier design ; Amplitudes ; Capacitor banks ; Closed loops ; Compensation ; Form factors ; Impedance matching ; Modules ; Particle accelerators ; Phase stability ; Power amplifiers ; Proton accelerators ; Scientific apparatus &amp; instruments ; Solid state ; Spallation ; Time domain analysis</subject><ispartof>Review of scientific instruments, 2019-10, Vol.90 (10)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-fe945776fa3902086507304c39ef672663143d93adee9991a83fa22d402f6c443</citedby><cites>FETCH-LOGICAL-c399t-fe945776fa3902086507304c39ef672663143d93adee9991a83fa22d402f6c443</cites><orcidid>0000-0002-2217-8032 ; 0000-0002-9882-4782 ; 0000-0003-2239-893X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.5110981$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,782,784,795,885,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-402616$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Duc, L. Hoang</creatorcontrib><creatorcontrib>Jobs, M.</creatorcontrib><creatorcontrib>Lofnes, T.</creatorcontrib><creatorcontrib>Ruber, R.</creatorcontrib><creatorcontrib>Olsson, J.</creatorcontrib><creatorcontrib>Dancila, D.</creatorcontrib><title>Feedback compensated 10 kW solid-state pulsed power amplifier at 352 MHz for particle accelerators</title><title>Review of scientific instruments</title><description>This paper presents the first results of an in-house developed low-level radio frequency (LLRF) system and a 10 kW solid state power amplifier (SSPA). The design approach for the SSPA is based on eight resonant single-ended kilowatt modules combined using a planar Gysel combiner. Each of the single-ended modules is based on a two-stepped impedance resonant matching, allowing for harmonic suppression, simple design for massive production, and high-performance design. A design methodology to tune SSPA modules for optimum combining efficiency is presented thoroughly in the time domain. We characterize the power droop due to capacitor banks in the time domain. In open loop of compensation, it is about 1 kW within the pulse of peak value 10 kW and a duration of 3.5 ms. This may lead to the beam instability of the accelerator as particles are not provided with the same energy during the pulse. By incorporating our LLRF system, it is demonstrated that the objective of amplitude and phase stability is satisfied, as required in the European Spallation Source proton accelerator. The presented design also offers the advantages of compact form factor, low complexity, and better performance. In closed loop compensation, the variation of amplitude (pulse droop) is measured on the order of 20 W, which is equivalent to 0.2% at 10 kW peak output power.</description><subject>Amplifier design</subject><subject>Amplitudes</subject><subject>Capacitor banks</subject><subject>Closed loops</subject><subject>Compensation</subject><subject>Form factors</subject><subject>Impedance matching</subject><subject>Modules</subject><subject>Particle accelerators</subject><subject>Phase stability</subject><subject>Power amplifiers</subject><subject>Proton accelerators</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Solid state</subject><subject>Spallation</subject><subject>Time domain analysis</subject><issn>0034-6748</issn><issn>1089-7623</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AJDQP</sourceid><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk-LWfDW7OZZqrVDx4scxpNlE0m6bmOxa9Neb0qJ35zLDzPO-DC8A5xgNMOL0Bg-GGCNR4QPQw6gSRckJPQQ9hCgreMmqY3CS0gLlymAPzCfG1HOll1D7VTDrpFpTQ4zg8g0m37i6SG1ewdA1KR-C35gI1So0zrrt1EI6JPBx-g2tjzCo2DrdGKi0No2JqvUxnYIjq7L6bN_74GVy9zyeFrOn-4fxaFZoKkRbWCPYsCy5VVQggio-RCVFLB-N5SXhnGJGa0FVbYwQAquKWkVIzRCxXDNG--B655s2JnRzGaJbqfglvXLy1r2OpI_vsutkFnDMM36xw0P0H51JrVz4Lq7zh5LQHCWjiOBMXe4oHX1K0dhfW4zkNnGJ5T7xzF7tH9Auh-b8-n_wp49_oAy1pT81t4zZ</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Duc, L. Hoang</creator><creator>Jobs, M.</creator><creator>Lofnes, T.</creator><creator>Ruber, R.</creator><creator>Olsson, J.</creator><creator>Dancila, D.</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-2217-8032</orcidid><orcidid>https://orcid.org/0000-0002-9882-4782</orcidid><orcidid>https://orcid.org/0000-0003-2239-893X</orcidid></search><sort><creationdate>20191001</creationdate><title>Feedback compensated 10 kW solid-state pulsed power amplifier at 352 MHz for particle accelerators</title><author>Duc, L. Hoang ; Jobs, M. ; Lofnes, T. ; Ruber, R. ; Olsson, J. ; Dancila, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-fe945776fa3902086507304c39ef672663143d93adee9991a83fa22d402f6c443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplifier design</topic><topic>Amplitudes</topic><topic>Capacitor banks</topic><topic>Closed loops</topic><topic>Compensation</topic><topic>Form factors</topic><topic>Impedance matching</topic><topic>Modules</topic><topic>Particle accelerators</topic><topic>Phase stability</topic><topic>Power amplifiers</topic><topic>Proton accelerators</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Solid state</topic><topic>Spallation</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duc, L. Hoang</creatorcontrib><creatorcontrib>Jobs, M.</creatorcontrib><creatorcontrib>Lofnes, T.</creatorcontrib><creatorcontrib>Ruber, R.</creatorcontrib><creatorcontrib>Olsson, J.</creatorcontrib><creatorcontrib>Dancila, D.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duc, L. Hoang</au><au>Jobs, M.</au><au>Lofnes, T.</au><au>Ruber, R.</au><au>Olsson, J.</au><au>Dancila, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feedback compensated 10 kW solid-state pulsed power amplifier at 352 MHz for particle accelerators</atitle><jtitle>Review of scientific instruments</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>90</volume><issue>10</issue><issn>0034-6748</issn><issn>1089-7623</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>This paper presents the first results of an in-house developed low-level radio frequency (LLRF) system and a 10 kW solid state power amplifier (SSPA). The design approach for the SSPA is based on eight resonant single-ended kilowatt modules combined using a planar Gysel combiner. Each of the single-ended modules is based on a two-stepped impedance resonant matching, allowing for harmonic suppression, simple design for massive production, and high-performance design. A design methodology to tune SSPA modules for optimum combining efficiency is presented thoroughly in the time domain. We characterize the power droop due to capacitor banks in the time domain. In open loop of compensation, it is about 1 kW within the pulse of peak value 10 kW and a duration of 3.5 ms. This may lead to the beam instability of the accelerator as particles are not provided with the same energy during the pulse. By incorporating our LLRF system, it is demonstrated that the objective of amplitude and phase stability is satisfied, as required in the European Spallation Source proton accelerator. The presented design also offers the advantages of compact form factor, low complexity, and better performance. In closed loop compensation, the variation of amplitude (pulse droop) is measured on the order of 20 W, which is equivalent to 0.2% at 10 kW peak output power.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5110981</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2217-8032</orcidid><orcidid>https://orcid.org/0000-0002-9882-4782</orcidid><orcidid>https://orcid.org/0000-0003-2239-893X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2019-10, Vol.90 (10)
issn 0034-6748
1089-7623
1089-7623
language eng
recordid cdi_proquest_journals_2306343021
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects Amplifier design
Amplitudes
Capacitor banks
Closed loops
Compensation
Form factors
Impedance matching
Modules
Particle accelerators
Phase stability
Power amplifiers
Proton accelerators
Scientific apparatus & instruments
Solid state
Spallation
Time domain analysis
title Feedback compensated 10 kW solid-state pulsed power amplifier at 352 MHz for particle accelerators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A01%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feedback%20compensated%2010%20kW%20solid-state%20pulsed%20power%20amplifier%20at%20352%20MHz%20for%20particle%20accelerators&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Duc,%20L.%20Hoang&rft.date=2019-10-01&rft.volume=90&rft.issue=10&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.5110981&rft_dat=%3Cproquest_swepu%3E2306343021%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-fe945776fa3902086507304c39ef672663143d93adee9991a83fa22d402f6c443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306343021&rft_id=info:pmid/&rfr_iscdi=true