Loading…
Newton transformations and motivic invariants at infinity of plane curves
In this article we give an expression of the motivic Milnor fiber at infinity and the motivic nearby cycles at infinity of a polynomial \(f\) in two variables with coefficients in an algebraic closed field of characteristic zero. This expression is given in terms of some motives associated to the fa...
Saved in:
Published in: | arXiv.org 2019-10 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cassou-Noguès, Pierrette Raibaut, Michel |
description | In this article we give an expression of the motivic Milnor fiber at infinity and the motivic nearby cycles at infinity of a polynomial \(f\) in two variables with coefficients in an algebraic closed field of characteristic zero. This expression is given in terms of some motives associated to the faces of the Newton polygons appearing in the Newton algorithm at infinity of \(f\) without any condition of convenience or non degeneracy. In the complex setting, we compute the Euler characteristic of the generic fiber of \(f\) in terms of the area of the surfaces associated to faces of the Newton polygons. Furthermore, if \(f\) has isolated singularities, we compute similarly the classical invariants at infinity \(\lambda_{c}(f)\) which measures the non equisingularity at infinity of the fibers of \(f\) in \(\mathbb P^2\), and we prove the equality between the topological and the motivic bifurcation sets and give an algorithm to compute them. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2306360191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306360191</sourcerecordid><originalsourceid>FETCH-proquest_journals_23063601913</originalsourceid><addsrcrecordid>eNqNikEKwjAQRYMgWLR3GHBdSBMbdS2Kbly5L0NNIKWd1GRa8fZ24QFcfd57fyEypXVZHHZKrUSeUiulVGavqkpn4na3bw4EHJGSC7FH9oESID2hD-wn34CnCaNH4lnzTM6T5w8EB0OHZKEZ42TTRiwddsnmv12L7eX8OF2LIYbXaBPXbRgjzalWWhptZHks9X-vLwXsPTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306360191</pqid></control><display><type>article</type><title>Newton transformations and motivic invariants at infinity of plane curves</title><source>Publicly Available Content Database</source><creator>Cassou-Noguès, Pierrette ; Raibaut, Michel</creator><creatorcontrib>Cassou-Noguès, Pierrette ; Raibaut, Michel</creatorcontrib><description>In this article we give an expression of the motivic Milnor fiber at infinity and the motivic nearby cycles at infinity of a polynomial \(f\) in two variables with coefficients in an algebraic closed field of characteristic zero. This expression is given in terms of some motives associated to the faces of the Newton polygons appearing in the Newton algorithm at infinity of \(f\) without any condition of convenience or non degeneracy. In the complex setting, we compute the Euler characteristic of the generic fiber of \(f\) in terms of the area of the surfaces associated to faces of the Newton polygons. Furthermore, if \(f\) has isolated singularities, we compute similarly the classical invariants at infinity \(\lambda_{c}(f)\) which measures the non equisingularity at infinity of the fibers of \(f\) in \(\mathbb P^2\), and we prove the equality between the topological and the motivic bifurcation sets and give an algorithm to compute them.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Bifurcations ; Curves ; Infinity ; Invariants ; Polygons ; Polynomials ; Singularities</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2306360191?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Cassou-Noguès, Pierrette</creatorcontrib><creatorcontrib>Raibaut, Michel</creatorcontrib><title>Newton transformations and motivic invariants at infinity of plane curves</title><title>arXiv.org</title><description>In this article we give an expression of the motivic Milnor fiber at infinity and the motivic nearby cycles at infinity of a polynomial \(f\) in two variables with coefficients in an algebraic closed field of characteristic zero. This expression is given in terms of some motives associated to the faces of the Newton polygons appearing in the Newton algorithm at infinity of \(f\) without any condition of convenience or non degeneracy. In the complex setting, we compute the Euler characteristic of the generic fiber of \(f\) in terms of the area of the surfaces associated to faces of the Newton polygons. Furthermore, if \(f\) has isolated singularities, we compute similarly the classical invariants at infinity \(\lambda_{c}(f)\) which measures the non equisingularity at infinity of the fibers of \(f\) in \(\mathbb P^2\), and we prove the equality between the topological and the motivic bifurcation sets and give an algorithm to compute them.</description><subject>Algorithms</subject><subject>Bifurcations</subject><subject>Curves</subject><subject>Infinity</subject><subject>Invariants</subject><subject>Polygons</subject><subject>Polynomials</subject><subject>Singularities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKwjAQRYMgWLR3GHBdSBMbdS2Kbly5L0NNIKWd1GRa8fZ24QFcfd57fyEypXVZHHZKrUSeUiulVGavqkpn4na3bw4EHJGSC7FH9oESID2hD-wn34CnCaNH4lnzTM6T5w8EB0OHZKEZ42TTRiwddsnmv12L7eX8OF2LIYbXaBPXbRgjzalWWhptZHks9X-vLwXsPTo</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Cassou-Noguès, Pierrette</creator><creator>Raibaut, Michel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191015</creationdate><title>Newton transformations and motivic invariants at infinity of plane curves</title><author>Cassou-Noguès, Pierrette ; Raibaut, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23063601913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bifurcations</topic><topic>Curves</topic><topic>Infinity</topic><topic>Invariants</topic><topic>Polygons</topic><topic>Polynomials</topic><topic>Singularities</topic><toplevel>online_resources</toplevel><creatorcontrib>Cassou-Noguès, Pierrette</creatorcontrib><creatorcontrib>Raibaut, Michel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassou-Noguès, Pierrette</au><au>Raibaut, Michel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Newton transformations and motivic invariants at infinity of plane curves</atitle><jtitle>arXiv.org</jtitle><date>2019-10-15</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>In this article we give an expression of the motivic Milnor fiber at infinity and the motivic nearby cycles at infinity of a polynomial \(f\) in two variables with coefficients in an algebraic closed field of characteristic zero. This expression is given in terms of some motives associated to the faces of the Newton polygons appearing in the Newton algorithm at infinity of \(f\) without any condition of convenience or non degeneracy. In the complex setting, we compute the Euler characteristic of the generic fiber of \(f\) in terms of the area of the surfaces associated to faces of the Newton polygons. Furthermore, if \(f\) has isolated singularities, we compute similarly the classical invariants at infinity \(\lambda_{c}(f)\) which measures the non equisingularity at infinity of the fibers of \(f\) in \(\mathbb P^2\), and we prove the equality between the topological and the motivic bifurcation sets and give an algorithm to compute them.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2306360191 |
source | Publicly Available Content Database |
subjects | Algorithms Bifurcations Curves Infinity Invariants Polygons Polynomials Singularities |
title | Newton transformations and motivic invariants at infinity of plane curves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Newton%20transformations%20and%20motivic%20invariants%20at%20infinity%20of%20plane%20curves&rft.jtitle=arXiv.org&rft.au=Cassou-Nogu%C3%A8s,%20Pierrette&rft.date=2019-10-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2306360191%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23063601913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306360191&rft_id=info:pmid/&rfr_iscdi=true |