Loading…

Industry 4.0 technologies basic network identification

Nowadays, one of the most discussed topics in the technology industry is related to the new industrial revolution, called Industry 4.0. Industry 4.0 will transform entire production systems and products. However, the subject still lacks systematic study in its state of the art. This study seeks to i...

Full description

Saved in:
Bibliographic Details
Published in:Scientometrics 2019-11, Vol.121 (2), p.977-994
Main Authors: Da Costa, Matheus Becker, Dos Santos, Leonardo Moraes Aguiar Lima, Schaefer, Jones Luís, Baierle, Ismael Cristofer, Nara, Elpidio Oscar Benitez
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-da45713aaaa1f0b7b6139a6d6220e36c2023417eff501cb02d53a6f6ae3495113
cites cdi_FETCH-LOGICAL-c367t-da45713aaaa1f0b7b6139a6d6220e36c2023417eff501cb02d53a6f6ae3495113
container_end_page 994
container_issue 2
container_start_page 977
container_title Scientometrics
container_volume 121
creator Da Costa, Matheus Becker
Dos Santos, Leonardo Moraes Aguiar Lima
Schaefer, Jones Luís
Baierle, Ismael Cristofer
Nara, Elpidio Oscar Benitez
description Nowadays, one of the most discussed topics in the technology industry is related to the new industrial revolution, called Industry 4.0. Industry 4.0 will transform entire production systems and products. However, the subject still lacks systematic study in its state of the art. This study seeks to identify relations or associations among emerging technologies in Industry 4.0. Through publications on its theme and keywords, a data mining technique was applied to help identify the network of associations with a new bibliometric approach. In order to reach the objective of the study, we utilized the Apriori algorithm in the Waikato Environment for Knowledge Analysis software. In this process, 15 association rules were found that met the input metrics: support, confidence, and lift. The rules point to two main technologies, internet of things and cyber-physical systems. This research points out that these technologies are key elements of Industry 4.0, and are related to others, such as cloud, big data, automation, virtualization, and robotics. Through data mining, the best associations and relations of the technologies in Industry 4.0 were identified. Moreover, this study pointed out the most important technologies for the new industrial revolution and the complementary technologies of each identified group. Thus, this network of technologies provides a basic guide for future works, which seek to deepen the characteristics of these relations.
doi_str_mv 10.1007/s11192-019-03216-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2306533105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306533105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-da45713aaaa1f0b7b6139a6d6220e36c2023417eff501cb02d53a6f6ae3495113</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisXaZ8SROskQVL6kSG1hbTuIUl2IX2xXq32MIEjtmczf33JEOY5cICwSoryMitoIDthxIoOT1EZth1TRcNBKP2QyQGt4iwSk7i3EDGSJoZkw-umEfUzgU5QKKZPpX57d-bU0sOh1tXziTPn14K-xgXLKj7XWy3p2zk1Fvo7n4zTl7ubt9Xj7w1dP94_JmxXuSdeKDLqsaSefDEbq6k0itloMUAgzJXoCgEmszjhVg34EYKtJylNpQ2VaINGdX0-4u-I-9iUlt_D64_FIJAlkRIVS5JaZWH3yMwYxqF-y7DgeFoL79qMmPyn7Ujx9VZ4gmKOayW5vwN_0P9QWNEmbS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306533105</pqid></control><display><type>article</type><title>Industry 4.0 technologies basic network identification</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>Springer Nature</source><creator>Da Costa, Matheus Becker ; Dos Santos, Leonardo Moraes Aguiar Lima ; Schaefer, Jones Luís ; Baierle, Ismael Cristofer ; Nara, Elpidio Oscar Benitez</creator><creatorcontrib>Da Costa, Matheus Becker ; Dos Santos, Leonardo Moraes Aguiar Lima ; Schaefer, Jones Luís ; Baierle, Ismael Cristofer ; Nara, Elpidio Oscar Benitez</creatorcontrib><description>Nowadays, one of the most discussed topics in the technology industry is related to the new industrial revolution, called Industry 4.0. Industry 4.0 will transform entire production systems and products. However, the subject still lacks systematic study in its state of the art. This study seeks to identify relations or associations among emerging technologies in Industry 4.0. Through publications on its theme and keywords, a data mining technique was applied to help identify the network of associations with a new bibliometric approach. In order to reach the objective of the study, we utilized the Apriori algorithm in the Waikato Environment for Knowledge Analysis software. In this process, 15 association rules were found that met the input metrics: support, confidence, and lift. The rules point to two main technologies, internet of things and cyber-physical systems. This research points out that these technologies are key elements of Industry 4.0, and are related to others, such as cloud, big data, automation, virtualization, and robotics. Through data mining, the best associations and relations of the technologies in Industry 4.0 were identified. Moreover, this study pointed out the most important technologies for the new industrial revolution and the complementary technologies of each identified group. Thus, this network of technologies provides a basic guide for future works, which seek to deepen the characteristics of these relations.</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-019-03216-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Automation ; Bibliometrics ; Computer Science ; Cyber-physical systems ; Data mining ; Industrial applications ; Industrial Revolution ; Information Storage and Retrieval ; Library Science ; New technology ; Robotics ; State-of-the-art reviews</subject><ispartof>Scientometrics, 2019-11, Vol.121 (2), p.977-994</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-da45713aaaa1f0b7b6139a6d6220e36c2023417eff501cb02d53a6f6ae3495113</citedby><cites>FETCH-LOGICAL-c367t-da45713aaaa1f0b7b6139a6d6220e36c2023417eff501cb02d53a6f6ae3495113</cites><orcidid>0000-0002-6591-2380 ; 0000-0002-4947-953X ; 0000-0003-3986-8715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924,34134</link.rule.ids></links><search><creatorcontrib>Da Costa, Matheus Becker</creatorcontrib><creatorcontrib>Dos Santos, Leonardo Moraes Aguiar Lima</creatorcontrib><creatorcontrib>Schaefer, Jones Luís</creatorcontrib><creatorcontrib>Baierle, Ismael Cristofer</creatorcontrib><creatorcontrib>Nara, Elpidio Oscar Benitez</creatorcontrib><title>Industry 4.0 technologies basic network identification</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>Nowadays, one of the most discussed topics in the technology industry is related to the new industrial revolution, called Industry 4.0. Industry 4.0 will transform entire production systems and products. However, the subject still lacks systematic study in its state of the art. This study seeks to identify relations or associations among emerging technologies in Industry 4.0. Through publications on its theme and keywords, a data mining technique was applied to help identify the network of associations with a new bibliometric approach. In order to reach the objective of the study, we utilized the Apriori algorithm in the Waikato Environment for Knowledge Analysis software. In this process, 15 association rules were found that met the input metrics: support, confidence, and lift. The rules point to two main technologies, internet of things and cyber-physical systems. This research points out that these technologies are key elements of Industry 4.0, and are related to others, such as cloud, big data, automation, virtualization, and robotics. Through data mining, the best associations and relations of the technologies in Industry 4.0 were identified. Moreover, this study pointed out the most important technologies for the new industrial revolution and the complementary technologies of each identified group. Thus, this network of technologies provides a basic guide for future works, which seek to deepen the characteristics of these relations.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Bibliometrics</subject><subject>Computer Science</subject><subject>Cyber-physical systems</subject><subject>Data mining</subject><subject>Industrial applications</subject><subject>Industrial Revolution</subject><subject>Information Storage and Retrieval</subject><subject>Library Science</subject><subject>New technology</subject><subject>Robotics</subject><subject>State-of-the-art reviews</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wisXaZ8SROskQVL6kSG1hbTuIUl2IX2xXq32MIEjtmczf33JEOY5cICwSoryMitoIDthxIoOT1EZth1TRcNBKP2QyQGt4iwSk7i3EDGSJoZkw-umEfUzgU5QKKZPpX57d-bU0sOh1tXziTPn14K-xgXLKj7XWy3p2zk1Fvo7n4zTl7ubt9Xj7w1dP94_JmxXuSdeKDLqsaSefDEbq6k0itloMUAgzJXoCgEmszjhVg34EYKtJylNpQ2VaINGdX0-4u-I-9iUlt_D64_FIJAlkRIVS5JaZWH3yMwYxqF-y7DgeFoL79qMmPyn7Ujx9VZ4gmKOayW5vwN_0P9QWNEmbS</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Da Costa, Matheus Becker</creator><creator>Dos Santos, Leonardo Moraes Aguiar Lima</creator><creator>Schaefer, Jones Luís</creator><creator>Baierle, Ismael Cristofer</creator><creator>Nara, Elpidio Oscar Benitez</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0002-6591-2380</orcidid><orcidid>https://orcid.org/0000-0002-4947-953X</orcidid><orcidid>https://orcid.org/0000-0003-3986-8715</orcidid></search><sort><creationdate>20191101</creationdate><title>Industry 4.0 technologies basic network identification</title><author>Da Costa, Matheus Becker ; Dos Santos, Leonardo Moraes Aguiar Lima ; Schaefer, Jones Luís ; Baierle, Ismael Cristofer ; Nara, Elpidio Oscar Benitez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-da45713aaaa1f0b7b6139a6d6220e36c2023417eff501cb02d53a6f6ae3495113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Bibliometrics</topic><topic>Computer Science</topic><topic>Cyber-physical systems</topic><topic>Data mining</topic><topic>Industrial applications</topic><topic>Industrial Revolution</topic><topic>Information Storage and Retrieval</topic><topic>Library Science</topic><topic>New technology</topic><topic>Robotics</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da Costa, Matheus Becker</creatorcontrib><creatorcontrib>Dos Santos, Leonardo Moraes Aguiar Lima</creatorcontrib><creatorcontrib>Schaefer, Jones Luís</creatorcontrib><creatorcontrib>Baierle, Ismael Cristofer</creatorcontrib><creatorcontrib>Nara, Elpidio Oscar Benitez</creatorcontrib><collection>CrossRef</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Costa, Matheus Becker</au><au>Dos Santos, Leonardo Moraes Aguiar Lima</au><au>Schaefer, Jones Luís</au><au>Baierle, Ismael Cristofer</au><au>Nara, Elpidio Oscar Benitez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Industry 4.0 technologies basic network identification</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>121</volume><issue>2</issue><spage>977</spage><epage>994</epage><pages>977-994</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>Nowadays, one of the most discussed topics in the technology industry is related to the new industrial revolution, called Industry 4.0. Industry 4.0 will transform entire production systems and products. However, the subject still lacks systematic study in its state of the art. This study seeks to identify relations or associations among emerging technologies in Industry 4.0. Through publications on its theme and keywords, a data mining technique was applied to help identify the network of associations with a new bibliometric approach. In order to reach the objective of the study, we utilized the Apriori algorithm in the Waikato Environment for Knowledge Analysis software. In this process, 15 association rules were found that met the input metrics: support, confidence, and lift. The rules point to two main technologies, internet of things and cyber-physical systems. This research points out that these technologies are key elements of Industry 4.0, and are related to others, such as cloud, big data, automation, virtualization, and robotics. Through data mining, the best associations and relations of the technologies in Industry 4.0 were identified. Moreover, this study pointed out the most important technologies for the new industrial revolution and the complementary technologies of each identified group. Thus, this network of technologies provides a basic guide for future works, which seek to deepen the characteristics of these relations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-019-03216-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6591-2380</orcidid><orcidid>https://orcid.org/0000-0002-4947-953X</orcidid><orcidid>https://orcid.org/0000-0003-3986-8715</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0138-9130
ispartof Scientometrics, 2019-11, Vol.121 (2), p.977-994
issn 0138-9130
1588-2861
language eng
recordid cdi_proquest_journals_2306533105
source Library & Information Science Abstracts (LISA); Springer Nature
subjects Algorithms
Automation
Bibliometrics
Computer Science
Cyber-physical systems
Data mining
Industrial applications
Industrial Revolution
Information Storage and Retrieval
Library Science
New technology
Robotics
State-of-the-art reviews
title Industry 4.0 technologies basic network identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Industry%204.0%20technologies%20basic%20network%20identification&rft.jtitle=Scientometrics&rft.au=Da%20Costa,%20Matheus%20Becker&rft.date=2019-11-01&rft.volume=121&rft.issue=2&rft.spage=977&rft.epage=994&rft.pages=977-994&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-019-03216-7&rft_dat=%3Cproquest_cross%3E2306533105%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-da45713aaaa1f0b7b6139a6d6220e36c2023417eff501cb02d53a6f6ae3495113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306533105&rft_id=info:pmid/&rfr_iscdi=true