Loading…

Higher Whitehead Products in Moment—Angle Complexes and Substitution of Simplicial Complexes

We study the question of realisability of iterated higher Whitehead products with a given form of nested brackets by simplicial complexes, using the notion of the moment–angle complex Z K . Namely, we say that a simplicial complex K realises an iterated higher Whitehead product w if w is a nontrivia...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Steklov Institute of Mathematics 2019-05, Vol.305 (1), p.1-21
Main Authors: Abramyan, Semyon A., Panov, Taras E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-e09cb97d19aa3f9f9fa8ade98cea06b6d436b6c190d96146841bb6b6217210ab3
cites cdi_FETCH-LOGICAL-c382t-e09cb97d19aa3f9f9fa8ade98cea06b6d436b6c190d96146841bb6b6217210ab3
container_end_page 21
container_issue 1
container_start_page 1
container_title Proceedings of the Steklov Institute of Mathematics
container_volume 305
creator Abramyan, Semyon A.
Panov, Taras E.
description We study the question of realisability of iterated higher Whitehead products with a given form of nested brackets by simplicial complexes, using the notion of the moment–angle complex Z K . Namely, we say that a simplicial complex K realises an iterated higher Whitehead product w if w is a nontrivial element of π * ( Z K ) . The combinatorial approach to the question of realisability uses the operation of substitution of simplicial complexes: for any iterated higher Whitehead product w we describe a simplicial complex ∂Δ w that realises w. Furthermore, for a particular form of brackets inside w, we prove that ∂Δ w is the smallest complex that realises w. We also give a combinatorial criterion for the nontriviality of the product w . In the proof of nontriviality we use the Hurewicz image of w in the cellular chains of Z K and the description of the cohomology product of Z K . The second approach is algebraic: we use the coalgebraic versions of the Koszul and Taylor complexes for the face coalgebra of K to describe the canonical cycles corresponding to iterated higher Whitehead products w . This gives another criterion for realisability of w .
doi_str_mv 10.1134/S0081543819030015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2306807386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306807386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-e09cb97d19aa3f9f9fa8ade98cea06b6d436b6c190d96146841bb6b6217210ab3</originalsourceid><addsrcrecordid>eNp1UM1KAzEQDqJgrT6At4Dn1ZnN_iTHUtQKFYUq3lyyu9k2ZbupSRb05kP4hD6JWSr0IDIwA_P9DPMRco5wiciSqwUAxzRhHAUwAEwPyAhThhHPID0kowGOBvyYnDi3BkjSPBEj8jrTy5Wy9GWlvVopWdNHa-q-8o7qjt6bjer89-fXpFu2ik7NZtuqd-Wo7Gq66Evnte-9Nh01DV3ogOpKy3ZPPCVHjWydOvudY_J8c_00nUXzh9u76WQeVYzHPlIgqlLkNQopWSNCSS5rJXilJGRlVics9Cr8VosMk4wnWJZhE2MeI8iSjcnFzndrzVuvnC_WprddOFnEDDIOOeNZYOGOVVnjnFVNsbV6I-1HgVAMMRZ_YgyaeKdxgdstld07_y_6AaX0dZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306807386</pqid></control><display><type>article</type><title>Higher Whitehead Products in Moment—Angle Complexes and Substitution of Simplicial Complexes</title><source>Springer Link</source><creator>Abramyan, Semyon A. ; Panov, Taras E.</creator><creatorcontrib>Abramyan, Semyon A. ; Panov, Taras E.</creatorcontrib><description>We study the question of realisability of iterated higher Whitehead products with a given form of nested brackets by simplicial complexes, using the notion of the moment–angle complex Z K . Namely, we say that a simplicial complex K realises an iterated higher Whitehead product w if w is a nontrivial element of π * ( Z K ) . The combinatorial approach to the question of realisability uses the operation of substitution of simplicial complexes: for any iterated higher Whitehead product w we describe a simplicial complex ∂Δ w that realises w. Furthermore, for a particular form of brackets inside w, we prove that ∂Δ w is the smallest complex that realises w. We also give a combinatorial criterion for the nontriviality of the product w . In the proof of nontriviality we use the Hurewicz image of w in the cellular chains of Z K and the description of the cohomology product of Z K . The second approach is algebraic: we use the coalgebraic versions of the Koszul and Taylor complexes for the face coalgebra of K to describe the canonical cycles corresponding to iterated higher Whitehead products w . This gives another criterion for realisability of w .</description><identifier>ISSN: 0081-5438</identifier><identifier>EISSN: 1531-8605</identifier><identifier>DOI: 10.1134/S0081543819030015</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Brackets ; Combinatorial analysis ; Criteria ; Homology ; Mathematics ; Mathematics and Statistics ; Questions ; Substitutes</subject><ispartof>Proceedings of the Steklov Institute of Mathematics, 2019-05, Vol.305 (1), p.1-21</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-e09cb97d19aa3f9f9fa8ade98cea06b6d436b6c190d96146841bb6b6217210ab3</citedby><cites>FETCH-LOGICAL-c382t-e09cb97d19aa3f9f9fa8ade98cea06b6d436b6c190d96146841bb6b6217210ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><creatorcontrib>Abramyan, Semyon A.</creatorcontrib><creatorcontrib>Panov, Taras E.</creatorcontrib><title>Higher Whitehead Products in Moment—Angle Complexes and Substitution of Simplicial Complexes</title><title>Proceedings of the Steklov Institute of Mathematics</title><addtitle>Proc. Steklov Inst. Math</addtitle><description>We study the question of realisability of iterated higher Whitehead products with a given form of nested brackets by simplicial complexes, using the notion of the moment–angle complex Z K . Namely, we say that a simplicial complex K realises an iterated higher Whitehead product w if w is a nontrivial element of π * ( Z K ) . The combinatorial approach to the question of realisability uses the operation of substitution of simplicial complexes: for any iterated higher Whitehead product w we describe a simplicial complex ∂Δ w that realises w. Furthermore, for a particular form of brackets inside w, we prove that ∂Δ w is the smallest complex that realises w. We also give a combinatorial criterion for the nontriviality of the product w . In the proof of nontriviality we use the Hurewicz image of w in the cellular chains of Z K and the description of the cohomology product of Z K . The second approach is algebraic: we use the coalgebraic versions of the Koszul and Taylor complexes for the face coalgebra of K to describe the canonical cycles corresponding to iterated higher Whitehead products w . This gives another criterion for realisability of w .</description><subject>Brackets</subject><subject>Combinatorial analysis</subject><subject>Criteria</subject><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Questions</subject><subject>Substitutes</subject><issn>0081-5438</issn><issn>1531-8605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UM1KAzEQDqJgrT6At4Dn1ZnN_iTHUtQKFYUq3lyyu9k2ZbupSRb05kP4hD6JWSr0IDIwA_P9DPMRco5wiciSqwUAxzRhHAUwAEwPyAhThhHPID0kowGOBvyYnDi3BkjSPBEj8jrTy5Wy9GWlvVopWdNHa-q-8o7qjt6bjer89-fXpFu2ik7NZtuqd-Wo7Gq66Evnte-9Nh01DV3ogOpKy3ZPPCVHjWydOvudY_J8c_00nUXzh9u76WQeVYzHPlIgqlLkNQopWSNCSS5rJXilJGRlVics9Cr8VosMk4wnWJZhE2MeI8iSjcnFzndrzVuvnC_WprddOFnEDDIOOeNZYOGOVVnjnFVNsbV6I-1HgVAMMRZ_YgyaeKdxgdstld07_y_6AaX0dZw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Abramyan, Semyon A.</creator><creator>Panov, Taras E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Higher Whitehead Products in Moment—Angle Complexes and Substitution of Simplicial Complexes</title><author>Abramyan, Semyon A. ; Panov, Taras E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-e09cb97d19aa3f9f9fa8ade98cea06b6d436b6c190d96146841bb6b6217210ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brackets</topic><topic>Combinatorial analysis</topic><topic>Criteria</topic><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Questions</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abramyan, Semyon A.</creatorcontrib><creatorcontrib>Panov, Taras E.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abramyan, Semyon A.</au><au>Panov, Taras E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Whitehead Products in Moment—Angle Complexes and Substitution of Simplicial Complexes</atitle><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle><stitle>Proc. Steklov Inst. Math</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>305</volume><issue>1</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>0081-5438</issn><eissn>1531-8605</eissn><abstract>We study the question of realisability of iterated higher Whitehead products with a given form of nested brackets by simplicial complexes, using the notion of the moment–angle complex Z K . Namely, we say that a simplicial complex K realises an iterated higher Whitehead product w if w is a nontrivial element of π * ( Z K ) . The combinatorial approach to the question of realisability uses the operation of substitution of simplicial complexes: for any iterated higher Whitehead product w we describe a simplicial complex ∂Δ w that realises w. Furthermore, for a particular form of brackets inside w, we prove that ∂Δ w is the smallest complex that realises w. We also give a combinatorial criterion for the nontriviality of the product w . In the proof of nontriviality we use the Hurewicz image of w in the cellular chains of Z K and the description of the cohomology product of Z K . The second approach is algebraic: we use the coalgebraic versions of the Koszul and Taylor complexes for the face coalgebra of K to describe the canonical cycles corresponding to iterated higher Whitehead products w . This gives another criterion for realisability of w .</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0081543819030015</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0081-5438
ispartof Proceedings of the Steklov Institute of Mathematics, 2019-05, Vol.305 (1), p.1-21
issn 0081-5438
1531-8605
language eng
recordid cdi_proquest_journals_2306807386
source Springer Link
subjects Brackets
Combinatorial analysis
Criteria
Homology
Mathematics
Mathematics and Statistics
Questions
Substitutes
title Higher Whitehead Products in Moment—Angle Complexes and Substitution of Simplicial Complexes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A51%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Whitehead%20Products%20in%20Moment%E2%80%94Angle%20Complexes%20and%20Substitution%20of%20Simplicial%20Complexes&rft.jtitle=Proceedings%20of%20the%20Steklov%20Institute%20of%20Mathematics&rft.au=Abramyan,%20Semyon%20A.&rft.date=2019-05-01&rft.volume=305&rft.issue=1&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=0081-5438&rft.eissn=1531-8605&rft_id=info:doi/10.1134/S0081543819030015&rft_dat=%3Cproquest_cross%3E2306807386%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-e09cb97d19aa3f9f9fa8ade98cea06b6d436b6c190d96146841bb6b6217210ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306807386&rft_id=info:pmid/&rfr_iscdi=true