Loading…

Justification of the NLS Approximation for the Euler–Poisson Equation

The nonlinear Schrödinger (NLS) equation can be derived as a formal approximation equation describing the envelopes of slowly modulated spatially and temporarily oscillating wave packet-like solutions to the ion Euler–Poisson equation. In this paper, we rigorously justify such approximation by givin...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2019-10, Vol.371 (2), p.357-398
Main Authors: Liu, Huimin, Pu, Xueke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-71347056d4f75e2a0e57e1c869a983ac7f5ceeeb49169d1287d79e160699e1f93
cites cdi_FETCH-LOGICAL-c319t-71347056d4f75e2a0e57e1c869a983ac7f5ceeeb49169d1287d79e160699e1f93
container_end_page 398
container_issue 2
container_start_page 357
container_title Communications in mathematical physics
container_volume 371
creator Liu, Huimin
Pu, Xueke
description The nonlinear Schrödinger (NLS) equation can be derived as a formal approximation equation describing the envelopes of slowly modulated spatially and temporarily oscillating wave packet-like solutions to the ion Euler–Poisson equation. In this paper, we rigorously justify such approximation by giving error estimates in Sobolev norms between exact solutions of the ion Euler–Poisson system and the formal approximation obtained via the NLS equation. The justification consists of several difficulties such as the resonances and loss of regularity, due to the quasilinearity of the problem. These difficulties are overcome by introducing normal form transformation and cutoff functions and carefully constructed energy functional of the equation.
doi_str_mv 10.1007/s00220-019-03576-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2306917715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2306917715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-71347056d4f75e2a0e57e1c869a983ac7f5ceeeb49169d1287d79e160699e1f93</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBc3Qm2U2aYym1VYoK6jms24luqU2b7ILefAff0Ccx7grePA3MfP_MPz9jpwjnCKAvIoAQwAENB1loxfM9NsBcCg4G1T4bACBwqVAdsqMYVwBghFIDNrtuY1O7uiqb2m8y77LmhbKbxX023m6Df6tf-4HzoZtM2zWFr4_PO1_HmPrTXdsBx-zAletIJ791yB4vpw-TOV_czq4m4wWvJJqGa5S5hkItc6cLEiVQoQmrkTKlGcmy0q6oiOgpT67NEsVIL7UhVKBMKs7IITvr9yZzu5ZiY1e-DZt00gqZKNQai0SJnqqCjzGQs9uQPgnvFsH-BGb7wGwKzHaB2TyJZC-KCd48U_hb_Y_qG70SbdY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306917715</pqid></control><display><type>article</type><title>Justification of the NLS Approximation for the Euler–Poisson Equation</title><source>Springer Nature</source><creator>Liu, Huimin ; Pu, Xueke</creator><creatorcontrib>Liu, Huimin ; Pu, Xueke</creatorcontrib><description>The nonlinear Schrödinger (NLS) equation can be derived as a formal approximation equation describing the envelopes of slowly modulated spatially and temporarily oscillating wave packet-like solutions to the ion Euler–Poisson equation. In this paper, we rigorously justify such approximation by giving error estimates in Sobolev norms between exact solutions of the ion Euler–Poisson system and the formal approximation obtained via the NLS equation. The justification consists of several difficulties such as the resonances and loss of regularity, due to the quasilinearity of the problem. These difficulties are overcome by introducing normal form transformation and cutoff functions and carefully constructed energy functional of the equation.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-019-03576-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Canonical forms ; Classical and Quantum Gravitation ; Complex Systems ; Functionals ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Physics ; Nonlinearity ; Norms ; Physics ; Physics and Astronomy ; Poisson equation ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2019-10, Vol.371 (2), p.357-398</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-71347056d4f75e2a0e57e1c869a983ac7f5ceeeb49169d1287d79e160699e1f93</citedby><cites>FETCH-LOGICAL-c319t-71347056d4f75e2a0e57e1c869a983ac7f5ceeeb49169d1287d79e160699e1f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Huimin</creatorcontrib><creatorcontrib>Pu, Xueke</creatorcontrib><title>Justification of the NLS Approximation for the Euler–Poisson Equation</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>The nonlinear Schrödinger (NLS) equation can be derived as a formal approximation equation describing the envelopes of slowly modulated spatially and temporarily oscillating wave packet-like solutions to the ion Euler–Poisson equation. In this paper, we rigorously justify such approximation by giving error estimates in Sobolev norms between exact solutions of the ion Euler–Poisson system and the formal approximation obtained via the NLS equation. The justification consists of several difficulties such as the resonances and loss of regularity, due to the quasilinearity of the problem. These difficulties are overcome by introducing normal form transformation and cutoff functions and carefully constructed energy functional of the equation.</description><subject>Approximation</subject><subject>Canonical forms</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Functionals</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Nonlinearity</subject><subject>Norms</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Poisson equation</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnBc3Qm2U2aYym1VYoK6jms24luqU2b7ILefAff0Ccx7grePA3MfP_MPz9jpwjnCKAvIoAQwAENB1loxfM9NsBcCg4G1T4bACBwqVAdsqMYVwBghFIDNrtuY1O7uiqb2m8y77LmhbKbxX023m6Df6tf-4HzoZtM2zWFr4_PO1_HmPrTXdsBx-zAletIJ791yB4vpw-TOV_czq4m4wWvJJqGa5S5hkItc6cLEiVQoQmrkTKlGcmy0q6oiOgpT67NEsVIL7UhVKBMKs7IITvr9yZzu5ZiY1e-DZt00gqZKNQai0SJnqqCjzGQs9uQPgnvFsH-BGb7wGwKzHaB2TyJZC-KCd48U_hb_Y_qG70SbdY</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Liu, Huimin</creator><creator>Pu, Xueke</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191001</creationdate><title>Justification of the NLS Approximation for the Euler–Poisson Equation</title><author>Liu, Huimin ; Pu, Xueke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-71347056d4f75e2a0e57e1c869a983ac7f5ceeeb49169d1287d79e160699e1f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Canonical forms</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Functionals</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Nonlinearity</topic><topic>Norms</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Poisson equation</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Huimin</creatorcontrib><creatorcontrib>Pu, Xueke</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Huimin</au><au>Pu, Xueke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Justification of the NLS Approximation for the Euler–Poisson Equation</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>371</volume><issue>2</issue><spage>357</spage><epage>398</epage><pages>357-398</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>The nonlinear Schrödinger (NLS) equation can be derived as a formal approximation equation describing the envelopes of slowly modulated spatially and temporarily oscillating wave packet-like solutions to the ion Euler–Poisson equation. In this paper, we rigorously justify such approximation by giving error estimates in Sobolev norms between exact solutions of the ion Euler–Poisson system and the formal approximation obtained via the NLS equation. The justification consists of several difficulties such as the resonances and loss of regularity, due to the quasilinearity of the problem. These difficulties are overcome by introducing normal form transformation and cutoff functions and carefully constructed energy functional of the equation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-019-03576-4</doi><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2019-10, Vol.371 (2), p.357-398
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2306917715
source Springer Nature
subjects Approximation
Canonical forms
Classical and Quantum Gravitation
Complex Systems
Functionals
Mathematical analysis
Mathematical and Computational Physics
Mathematical Physics
Nonlinearity
Norms
Physics
Physics and Astronomy
Poisson equation
Quantum Physics
Relativity Theory
Theoretical
title Justification of the NLS Approximation for the Euler–Poisson Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Justification%20of%20the%20NLS%20Approximation%20for%20the%20Euler%E2%80%93Poisson%20Equation&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Liu,%20Huimin&rft.date=2019-10-01&rft.volume=371&rft.issue=2&rft.spage=357&rft.epage=398&rft.pages=357-398&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-019-03576-4&rft_dat=%3Cproquest_cross%3E2306917715%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-71347056d4f75e2a0e57e1c869a983ac7f5ceeeb49169d1287d79e160699e1f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2306917715&rft_id=info:pmid/&rfr_iscdi=true