Loading…

Generalized minimum distance functions

Using commutative algebra methods, we study the generalized minimum distance function (gmd function) and the corresponding generalized footprint function of a graded ideal in a polynomial ring over a field. The number of solutions that a system of homogeneous polynomials has in any given finite set...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algebraic combinatorics 2019-11, Vol.50 (3), p.317-346
Main Authors: González-Sarabia, Manuel, Martínez-Bernal, José, Villarreal, Rafael H., Vivares, Carlos E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03
cites cdi_FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03
container_end_page 346
container_issue 3
container_start_page 317
container_title Journal of algebraic combinatorics
container_volume 50
creator González-Sarabia, Manuel
Martínez-Bernal, José
Villarreal, Rafael H.
Vivares, Carlos E.
description Using commutative algebra methods, we study the generalized minimum distance function (gmd function) and the corresponding generalized footprint function of a graded ideal in a polynomial ring over a field. The number of solutions that a system of homogeneous polynomials has in any given finite set of projective points is expressed as the degree of a graded ideal. If X is a set of projective points over a finite field and I is its vanishing ideal, we show that the gmd function and the Vasconcelos function of I are equal to the r th generalized Hamming weight of the corresponding Reed–Muller-type code C X ( d ) of degree d . We show that the generalized footprint function of I is a lower bound for the r th generalized Hamming weight of C X ( d ) . Then, we present some applications to projective nested Cartesian codes. To give applications of our lower bound to algebraic coding theory, we show an interesting integer inequality. Then, we show an explicit formula and a combinatorial formula for the second generalized Hamming weight of an affine Cartesian code.
doi_str_mv 10.1007/s10801-018-0855-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307168538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307168538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFtB8BadyW42maMUbYWCFz2HmE1kSzdbk12o_nq3rODJ0xze-97Ax9g1wh0CqPuMoAE5oOagpeSHEzZDqQQnJHHKZkBCctJE5-wi5y0AkEY5Y7crH32yu-bb14u2iU07tIu6yb2Nzi_CEF3fdDFfsrNgd9lf_d45e3t6fF2u-eZl9bx82HBXSOq50rVSgrBAKWuFVNVFUARU-hA0oVLSjmGlKl9a8a7KyjontC1FcNLLAMWc3Uy7-9R9Dj73ZtsNKY4vjShAYaVloccWTi2XupyTD2afmtamL4NgjjrMpMOMOsxRhzmMjJiYPHbjh09_y_9DP3miYTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307168538</pqid></control><display><type>article</type><title>Generalized minimum distance functions</title><source>Springer Nature</source><creator>González-Sarabia, Manuel ; Martínez-Bernal, José ; Villarreal, Rafael H. ; Vivares, Carlos E.</creator><creatorcontrib>González-Sarabia, Manuel ; Martínez-Bernal, José ; Villarreal, Rafael H. ; Vivares, Carlos E.</creatorcontrib><description>Using commutative algebra methods, we study the generalized minimum distance function (gmd function) and the corresponding generalized footprint function of a graded ideal in a polynomial ring over a field. The number of solutions that a system of homogeneous polynomials has in any given finite set of projective points is expressed as the degree of a graded ideal. If X is a set of projective points over a finite field and I is its vanishing ideal, we show that the gmd function and the Vasconcelos function of I are equal to the r th generalized Hamming weight of the corresponding Reed–Muller-type code C X ( d ) of degree d . We show that the generalized footprint function of I is a lower bound for the r th generalized Hamming weight of C X ( d ) . Then, we present some applications to projective nested Cartesian codes. To give applications of our lower bound to algebraic coding theory, we show an interesting integer inequality. Then, we show an explicit formula and a combinatorial formula for the second generalized Hamming weight of an affine Cartesian code.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-018-0855-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cartesian coordinates ; Codes ; Combinatorial analysis ; Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Fields (mathematics) ; Footprints ; Group Theory and Generalizations ; Lattices ; Lower bounds ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Polynomials ; Rings (mathematics) ; Weight</subject><ispartof>Journal of algebraic combinatorics, 2019-11, Vol.50 (3), p.317-346</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03</citedby><cites>FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>González-Sarabia, Manuel</creatorcontrib><creatorcontrib>Martínez-Bernal, José</creatorcontrib><creatorcontrib>Villarreal, Rafael H.</creatorcontrib><creatorcontrib>Vivares, Carlos E.</creatorcontrib><title>Generalized minimum distance functions</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>Using commutative algebra methods, we study the generalized minimum distance function (gmd function) and the corresponding generalized footprint function of a graded ideal in a polynomial ring over a field. The number of solutions that a system of homogeneous polynomials has in any given finite set of projective points is expressed as the degree of a graded ideal. If X is a set of projective points over a finite field and I is its vanishing ideal, we show that the gmd function and the Vasconcelos function of I are equal to the r th generalized Hamming weight of the corresponding Reed–Muller-type code C X ( d ) of degree d . We show that the generalized footprint function of I is a lower bound for the r th generalized Hamming weight of C X ( d ) . Then, we present some applications to projective nested Cartesian codes. To give applications of our lower bound to algebraic coding theory, we show an interesting integer inequality. Then, we show an explicit formula and a combinatorial formula for the second generalized Hamming weight of an affine Cartesian code.</description><subject>Cartesian coordinates</subject><subject>Codes</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Fields (mathematics)</subject><subject>Footprints</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Polynomials</subject><subject>Rings (mathematics)</subject><subject>Weight</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFtB8BadyW42maMUbYWCFz2HmE1kSzdbk12o_nq3rODJ0xze-97Ax9g1wh0CqPuMoAE5oOagpeSHEzZDqQQnJHHKZkBCctJE5-wi5y0AkEY5Y7crH32yu-bb14u2iU07tIu6yb2Nzi_CEF3fdDFfsrNgd9lf_d45e3t6fF2u-eZl9bx82HBXSOq50rVSgrBAKWuFVNVFUARU-hA0oVLSjmGlKl9a8a7KyjontC1FcNLLAMWc3Uy7-9R9Dj73ZtsNKY4vjShAYaVloccWTi2XupyTD2afmtamL4NgjjrMpMOMOsxRhzmMjJiYPHbjh09_y_9DP3miYTQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>González-Sarabia, Manuel</creator><creator>Martínez-Bernal, José</creator><creator>Villarreal, Rafael H.</creator><creator>Vivares, Carlos E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Generalized minimum distance functions</title><author>González-Sarabia, Manuel ; Martínez-Bernal, José ; Villarreal, Rafael H. ; Vivares, Carlos E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cartesian coordinates</topic><topic>Codes</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Fields (mathematics)</topic><topic>Footprints</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Polynomials</topic><topic>Rings (mathematics)</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Sarabia, Manuel</creatorcontrib><creatorcontrib>Martínez-Bernal, José</creatorcontrib><creatorcontrib>Villarreal, Rafael H.</creatorcontrib><creatorcontrib>Vivares, Carlos E.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Sarabia, Manuel</au><au>Martínez-Bernal, José</au><au>Villarreal, Rafael H.</au><au>Vivares, Carlos E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized minimum distance functions</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>50</volume><issue>3</issue><spage>317</spage><epage>346</epage><pages>317-346</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>Using commutative algebra methods, we study the generalized minimum distance function (gmd function) and the corresponding generalized footprint function of a graded ideal in a polynomial ring over a field. The number of solutions that a system of homogeneous polynomials has in any given finite set of projective points is expressed as the degree of a graded ideal. If X is a set of projective points over a finite field and I is its vanishing ideal, we show that the gmd function and the Vasconcelos function of I are equal to the r th generalized Hamming weight of the corresponding Reed–Muller-type code C X ( d ) of degree d . We show that the generalized footprint function of I is a lower bound for the r th generalized Hamming weight of C X ( d ) . Then, we present some applications to projective nested Cartesian codes. To give applications of our lower bound to algebraic coding theory, we show an interesting integer inequality. Then, we show an explicit formula and a combinatorial formula for the second generalized Hamming weight of an affine Cartesian code.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-018-0855-x</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2019-11, Vol.50 (3), p.317-346
issn 0925-9899
1572-9192
language eng
recordid cdi_proquest_journals_2307168538
source Springer Nature
subjects Cartesian coordinates
Codes
Combinatorial analysis
Combinatorics
Computer Science
Convex and Discrete Geometry
Fields (mathematics)
Footprints
Group Theory and Generalizations
Lattices
Lower bounds
Mathematical analysis
Mathematics
Mathematics and Statistics
Order
Ordered Algebraic Structures
Polynomials
Rings (mathematics)
Weight
title Generalized minimum distance functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20minimum%20distance%20functions&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Gonz%C3%A1lez-Sarabia,%20Manuel&rft.date=2019-11-01&rft.volume=50&rft.issue=3&rft.spage=317&rft.epage=346&rft.pages=317-346&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-018-0855-x&rft_dat=%3Cproquest_cross%3E2307168538%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307168538&rft_id=info:pmid/&rfr_iscdi=true