Loading…
Generalized minimum distance functions
Using commutative algebra methods, we study the generalized minimum distance function (gmd function) and the corresponding generalized footprint function of a graded ideal in a polynomial ring over a field. The number of solutions that a system of homogeneous polynomials has in any given finite set...
Saved in:
Published in: | Journal of algebraic combinatorics 2019-11, Vol.50 (3), p.317-346 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03 |
container_end_page | 346 |
container_issue | 3 |
container_start_page | 317 |
container_title | Journal of algebraic combinatorics |
container_volume | 50 |
creator | González-Sarabia, Manuel Martínez-Bernal, José Villarreal, Rafael H. Vivares, Carlos E. |
description | Using commutative algebra methods, we study the generalized minimum distance function (gmd function) and the corresponding generalized footprint function of a graded ideal in a polynomial ring over a field. The number of solutions that a system of homogeneous polynomials has in any given finite set of projective points is expressed as the degree of a graded ideal. If
X
is a set of projective points over a finite field and
I
is its vanishing ideal, we show that the gmd function and the Vasconcelos function of
I
are equal to the
r
th generalized Hamming weight of the corresponding Reed–Muller-type code
C
X
(
d
)
of degree
d
. We show that the generalized footprint function of
I
is a lower bound for the
r
th generalized Hamming weight of
C
X
(
d
)
. Then, we present some applications to projective nested Cartesian codes. To give applications of our lower bound to algebraic coding theory, we show an interesting integer inequality. Then, we show an explicit formula and a combinatorial formula for the second generalized Hamming weight of an affine Cartesian code. |
doi_str_mv | 10.1007/s10801-018-0855-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307168538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307168538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFtB8BadyW42maMUbYWCFz2HmE1kSzdbk12o_nq3rODJ0xze-97Ax9g1wh0CqPuMoAE5oOagpeSHEzZDqQQnJHHKZkBCctJE5-wi5y0AkEY5Y7crH32yu-bb14u2iU07tIu6yb2Nzi_CEF3fdDFfsrNgd9lf_d45e3t6fF2u-eZl9bx82HBXSOq50rVSgrBAKWuFVNVFUARU-hA0oVLSjmGlKl9a8a7KyjontC1FcNLLAMWc3Uy7-9R9Dj73ZtsNKY4vjShAYaVloccWTi2XupyTD2afmtamL4NgjjrMpMOMOsxRhzmMjJiYPHbjh09_y_9DP3miYTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307168538</pqid></control><display><type>article</type><title>Generalized minimum distance functions</title><source>Springer Nature</source><creator>González-Sarabia, Manuel ; Martínez-Bernal, José ; Villarreal, Rafael H. ; Vivares, Carlos E.</creator><creatorcontrib>González-Sarabia, Manuel ; Martínez-Bernal, José ; Villarreal, Rafael H. ; Vivares, Carlos E.</creatorcontrib><description>Using commutative algebra methods, we study the generalized minimum distance function (gmd function) and the corresponding generalized footprint function of a graded ideal in a polynomial ring over a field. The number of solutions that a system of homogeneous polynomials has in any given finite set of projective points is expressed as the degree of a graded ideal. If
X
is a set of projective points over a finite field and
I
is its vanishing ideal, we show that the gmd function and the Vasconcelos function of
I
are equal to the
r
th generalized Hamming weight of the corresponding Reed–Muller-type code
C
X
(
d
)
of degree
d
. We show that the generalized footprint function of
I
is a lower bound for the
r
th generalized Hamming weight of
C
X
(
d
)
. Then, we present some applications to projective nested Cartesian codes. To give applications of our lower bound to algebraic coding theory, we show an interesting integer inequality. Then, we show an explicit formula and a combinatorial formula for the second generalized Hamming weight of an affine Cartesian code.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-018-0855-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cartesian coordinates ; Codes ; Combinatorial analysis ; Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Fields (mathematics) ; Footprints ; Group Theory and Generalizations ; Lattices ; Lower bounds ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Polynomials ; Rings (mathematics) ; Weight</subject><ispartof>Journal of algebraic combinatorics, 2019-11, Vol.50 (3), p.317-346</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03</citedby><cites>FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>González-Sarabia, Manuel</creatorcontrib><creatorcontrib>Martínez-Bernal, José</creatorcontrib><creatorcontrib>Villarreal, Rafael H.</creatorcontrib><creatorcontrib>Vivares, Carlos E.</creatorcontrib><title>Generalized minimum distance functions</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>Using commutative algebra methods, we study the generalized minimum distance function (gmd function) and the corresponding generalized footprint function of a graded ideal in a polynomial ring over a field. The number of solutions that a system of homogeneous polynomials has in any given finite set of projective points is expressed as the degree of a graded ideal. If
X
is a set of projective points over a finite field and
I
is its vanishing ideal, we show that the gmd function and the Vasconcelos function of
I
are equal to the
r
th generalized Hamming weight of the corresponding Reed–Muller-type code
C
X
(
d
)
of degree
d
. We show that the generalized footprint function of
I
is a lower bound for the
r
th generalized Hamming weight of
C
X
(
d
)
. Then, we present some applications to projective nested Cartesian codes. To give applications of our lower bound to algebraic coding theory, we show an interesting integer inequality. Then, we show an explicit formula and a combinatorial formula for the second generalized Hamming weight of an affine Cartesian code.</description><subject>Cartesian coordinates</subject><subject>Codes</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Fields (mathematics)</subject><subject>Footprints</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Polynomials</subject><subject>Rings (mathematics)</subject><subject>Weight</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wFtB8BadyW42maMUbYWCFz2HmE1kSzdbk12o_nq3rODJ0xze-97Ax9g1wh0CqPuMoAE5oOagpeSHEzZDqQQnJHHKZkBCctJE5-wi5y0AkEY5Y7crH32yu-bb14u2iU07tIu6yb2Nzi_CEF3fdDFfsrNgd9lf_d45e3t6fF2u-eZl9bx82HBXSOq50rVSgrBAKWuFVNVFUARU-hA0oVLSjmGlKl9a8a7KyjontC1FcNLLAMWc3Uy7-9R9Dj73ZtsNKY4vjShAYaVloccWTi2XupyTD2afmtamL4NgjjrMpMOMOsxRhzmMjJiYPHbjh09_y_9DP3miYTQ</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>González-Sarabia, Manuel</creator><creator>Martínez-Bernal, José</creator><creator>Villarreal, Rafael H.</creator><creator>Vivares, Carlos E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Generalized minimum distance functions</title><author>González-Sarabia, Manuel ; Martínez-Bernal, José ; Villarreal, Rafael H. ; Vivares, Carlos E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cartesian coordinates</topic><topic>Codes</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Fields (mathematics)</topic><topic>Footprints</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Polynomials</topic><topic>Rings (mathematics)</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Sarabia, Manuel</creatorcontrib><creatorcontrib>Martínez-Bernal, José</creatorcontrib><creatorcontrib>Villarreal, Rafael H.</creatorcontrib><creatorcontrib>Vivares, Carlos E.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Sarabia, Manuel</au><au>Martínez-Bernal, José</au><au>Villarreal, Rafael H.</au><au>Vivares, Carlos E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized minimum distance functions</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>50</volume><issue>3</issue><spage>317</spage><epage>346</epage><pages>317-346</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>Using commutative algebra methods, we study the generalized minimum distance function (gmd function) and the corresponding generalized footprint function of a graded ideal in a polynomial ring over a field. The number of solutions that a system of homogeneous polynomials has in any given finite set of projective points is expressed as the degree of a graded ideal. If
X
is a set of projective points over a finite field and
I
is its vanishing ideal, we show that the gmd function and the Vasconcelos function of
I
are equal to the
r
th generalized Hamming weight of the corresponding Reed–Muller-type code
C
X
(
d
)
of degree
d
. We show that the generalized footprint function of
I
is a lower bound for the
r
th generalized Hamming weight of
C
X
(
d
)
. Then, we present some applications to projective nested Cartesian codes. To give applications of our lower bound to algebraic coding theory, we show an interesting integer inequality. Then, we show an explicit formula and a combinatorial formula for the second generalized Hamming weight of an affine Cartesian code.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-018-0855-x</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9899 |
ispartof | Journal of algebraic combinatorics, 2019-11, Vol.50 (3), p.317-346 |
issn | 0925-9899 1572-9192 |
language | eng |
recordid | cdi_proquest_journals_2307168538 |
source | Springer Nature |
subjects | Cartesian coordinates Codes Combinatorial analysis Combinatorics Computer Science Convex and Discrete Geometry Fields (mathematics) Footprints Group Theory and Generalizations Lattices Lower bounds Mathematical analysis Mathematics Mathematics and Statistics Order Ordered Algebraic Structures Polynomials Rings (mathematics) Weight |
title | Generalized minimum distance functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20minimum%20distance%20functions&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Gonz%C3%A1lez-Sarabia,%20Manuel&rft.date=2019-11-01&rft.volume=50&rft.issue=3&rft.spage=317&rft.epage=346&rft.pages=317-346&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-018-0855-x&rft_dat=%3Cproquest_cross%3E2307168538%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-78d772913155d7196d3f79094eff891775a913676e4a2b746acc28a42fc5e5f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307168538&rft_id=info:pmid/&rfr_iscdi=true |