Loading…

Pressure effects on the electronic structure and superconductivity of (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) high entropy alloy

Effects of pressure on the electronic structure, electron-phonon interaction, and superconductivity of the high entropy alloy (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) are studied in the pressure range 0 - 100 GPa. The electronic structure is calculated using the Korringa-Kohn-Rostoker method with the co...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-10
Main Authors: Jasiewicz, K, Wiendlocha, B, Górnicka, K, Gofryk, K, Gazda, M, Klimczuk, T, Tobola, J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jasiewicz, K
Wiendlocha, B
Górnicka, K
Gofryk, K
Gazda, M
Klimczuk, T
Tobola, J
description Effects of pressure on the electronic structure, electron-phonon interaction, and superconductivity of the high entropy alloy (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) are studied in the pressure range 0 - 100 GPa. The electronic structure is calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation. Effects of pressure on the lattice dynamics are simulated using the Debye-Gr\"{u}neisen model and the Gr\"{u}neisen parameter at ambient conditions. In addition, the Debye temperature and Sommerfeld electronic heat capacity coefficient were experimentally determined. The electron-phonon coupling parameter \(\lambda\) is calculated using the McMillan-Hopfield parameters and computed within the rigid muffin tin approximation. We find, that the system undergoes the Lifshitz transition, as one of the bands crosses the Fermi level at elevated pressures. The electron-phonon coupling parameter \(\lambda\) decreases above 10 GPa. The calculated superconducting \(T_c\) increases up to 40 - 50 GPa and, later, is stabilized at the larger value than for the ambient conditions, in agreement with the experimental findings. Our results show that the experimentally observed evolution of \(T_c\) with pressure in (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) can be well explained by the classical electron-phonon mechanism.
doi_str_mv 10.48550/arxiv.1910.08312
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2307247956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307247956</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-414b7232f3aa729e1207747f0ca54292e501b3665ee2c1b8adb475d16e96d3933</originalsourceid><addsrcrecordid>eNotjU1Lw0AURQdBsNT-AHcDbtpF6sx785EspagVirrISgplkkxsSsjUmaRYSv-7I3Z1OYfLvYTccTYXqZTswfif5jDnWRQsRQ5XZASIPEkFwA2ZhLBjjIHSICWOyPnD2xAGb6mta1v2gbqO9tuIbSTvuqakofdD2f91TFfRMOytL11XRdccmv5IXU2nuXkrZuvp5sTmSp_Xs-my_vR5c1GIUdFt87Wltour-yM1beuOt-S6Nm2wk0uOSf78lC-Wyer95XXxuEqMBJUILgoNCDUaoyGzHJjWQtesNFJABlYyXqBS0looeZGaqhBaVlzZTFWYIY7J_f_s3rvvwYZ-s3OD7-LjBpBpEDqTCn8ByrJetg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307247956</pqid></control><display><type>article</type><title>Pressure effects on the electronic structure and superconductivity of (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) high entropy alloy</title><source>Publicly Available Content (ProQuest)</source><creator>Jasiewicz, K ; Wiendlocha, B ; Górnicka, K ; Gofryk, K ; Gazda, M ; Klimczuk, T ; Tobola, J</creator><creatorcontrib>Jasiewicz, K ; Wiendlocha, B ; Górnicka, K ; Gofryk, K ; Gazda, M ; Klimczuk, T ; Tobola, J</creatorcontrib><description>Effects of pressure on the electronic structure, electron-phonon interaction, and superconductivity of the high entropy alloy (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) are studied in the pressure range 0 - 100 GPa. The electronic structure is calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation. Effects of pressure on the lattice dynamics are simulated using the Debye-Gr\"{u}neisen model and the Gr\"{u}neisen parameter at ambient conditions. In addition, the Debye temperature and Sommerfeld electronic heat capacity coefficient were experimentally determined. The electron-phonon coupling parameter \(\lambda\) is calculated using the McMillan-Hopfield parameters and computed within the rigid muffin tin approximation. We find, that the system undergoes the Lifshitz transition, as one of the bands crosses the Fermi level at elevated pressures. The electron-phonon coupling parameter \(\lambda\) decreases above 10 GPa. The calculated superconducting \(T_c\) increases up to 40 - 50 GPa and, later, is stabilized at the larger value than for the ambient conditions, in agreement with the experimental findings. Our results show that the experimentally observed evolution of \(T_c\) with pressure in (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) can be well explained by the classical electron-phonon mechanism.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1910.08312</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Coherent potential approximation ; Computer simulation ; Coupling ; Electron phonon interactions ; Electronic structure ; Electrons ; High entropy alloys ; Parameters ; Phonons ; Pressure effects ; Specific heat ; Superconductivity</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2307247956?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Jasiewicz, K</creatorcontrib><creatorcontrib>Wiendlocha, B</creatorcontrib><creatorcontrib>Górnicka, K</creatorcontrib><creatorcontrib>Gofryk, K</creatorcontrib><creatorcontrib>Gazda, M</creatorcontrib><creatorcontrib>Klimczuk, T</creatorcontrib><creatorcontrib>Tobola, J</creatorcontrib><title>Pressure effects on the electronic structure and superconductivity of (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) high entropy alloy</title><title>arXiv.org</title><description>Effects of pressure on the electronic structure, electron-phonon interaction, and superconductivity of the high entropy alloy (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) are studied in the pressure range 0 - 100 GPa. The electronic structure is calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation. Effects of pressure on the lattice dynamics are simulated using the Debye-Gr\"{u}neisen model and the Gr\"{u}neisen parameter at ambient conditions. In addition, the Debye temperature and Sommerfeld electronic heat capacity coefficient were experimentally determined. The electron-phonon coupling parameter \(\lambda\) is calculated using the McMillan-Hopfield parameters and computed within the rigid muffin tin approximation. We find, that the system undergoes the Lifshitz transition, as one of the bands crosses the Fermi level at elevated pressures. The electron-phonon coupling parameter \(\lambda\) decreases above 10 GPa. The calculated superconducting \(T_c\) increases up to 40 - 50 GPa and, later, is stabilized at the larger value than for the ambient conditions, in agreement with the experimental findings. Our results show that the experimentally observed evolution of \(T_c\) with pressure in (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) can be well explained by the classical electron-phonon mechanism.</description><subject>Approximation</subject><subject>Coherent potential approximation</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Electron phonon interactions</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>High entropy alloys</subject><subject>Parameters</subject><subject>Phonons</subject><subject>Pressure effects</subject><subject>Specific heat</subject><subject>Superconductivity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1Lw0AURQdBsNT-AHcDbtpF6sx785EspagVirrISgplkkxsSsjUmaRYSv-7I3Z1OYfLvYTccTYXqZTswfif5jDnWRQsRQ5XZASIPEkFwA2ZhLBjjIHSICWOyPnD2xAGb6mta1v2gbqO9tuIbSTvuqakofdD2f91TFfRMOytL11XRdccmv5IXU2nuXkrZuvp5sTmSp_Xs-my_vR5c1GIUdFt87Wltour-yM1beuOt-S6Nm2wk0uOSf78lC-Wyer95XXxuEqMBJUILgoNCDUaoyGzHJjWQtesNFJABlYyXqBS0looeZGaqhBaVlzZTFWYIY7J_f_s3rvvwYZ-s3OD7-LjBpBpEDqTCn8ByrJetg</recordid><startdate>20191018</startdate><enddate>20191018</enddate><creator>Jasiewicz, K</creator><creator>Wiendlocha, B</creator><creator>Górnicka, K</creator><creator>Gofryk, K</creator><creator>Gazda, M</creator><creator>Klimczuk, T</creator><creator>Tobola, J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191018</creationdate><title>Pressure effects on the electronic structure and superconductivity of (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) high entropy alloy</title><author>Jasiewicz, K ; Wiendlocha, B ; Górnicka, K ; Gofryk, K ; Gazda, M ; Klimczuk, T ; Tobola, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-414b7232f3aa729e1207747f0ca54292e501b3665ee2c1b8adb475d16e96d3933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Coherent potential approximation</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Electron phonon interactions</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>High entropy alloys</topic><topic>Parameters</topic><topic>Phonons</topic><topic>Pressure effects</topic><topic>Specific heat</topic><topic>Superconductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Jasiewicz, K</creatorcontrib><creatorcontrib>Wiendlocha, B</creatorcontrib><creatorcontrib>Górnicka, K</creatorcontrib><creatorcontrib>Gofryk, K</creatorcontrib><creatorcontrib>Gazda, M</creatorcontrib><creatorcontrib>Klimczuk, T</creatorcontrib><creatorcontrib>Tobola, J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasiewicz, K</au><au>Wiendlocha, B</au><au>Górnicka, K</au><au>Gofryk, K</au><au>Gazda, M</au><au>Klimczuk, T</au><au>Tobola, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure effects on the electronic structure and superconductivity of (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) high entropy alloy</atitle><jtitle>arXiv.org</jtitle><date>2019-10-18</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Effects of pressure on the electronic structure, electron-phonon interaction, and superconductivity of the high entropy alloy (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) are studied in the pressure range 0 - 100 GPa. The electronic structure is calculated using the Korringa-Kohn-Rostoker method with the coherent potential approximation. Effects of pressure on the lattice dynamics are simulated using the Debye-Gr\"{u}neisen model and the Gr\"{u}neisen parameter at ambient conditions. In addition, the Debye temperature and Sommerfeld electronic heat capacity coefficient were experimentally determined. The electron-phonon coupling parameter \(\lambda\) is calculated using the McMillan-Hopfield parameters and computed within the rigid muffin tin approximation. We find, that the system undergoes the Lifshitz transition, as one of the bands crosses the Fermi level at elevated pressures. The electron-phonon coupling parameter \(\lambda\) decreases above 10 GPa. The calculated superconducting \(T_c\) increases up to 40 - 50 GPa and, later, is stabilized at the larger value than for the ambient conditions, in agreement with the experimental findings. Our results show that the experimentally observed evolution of \(T_c\) with pressure in (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) can be well explained by the classical electron-phonon mechanism.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1910.08312</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2307247956
source Publicly Available Content (ProQuest)
subjects Approximation
Coherent potential approximation
Computer simulation
Coupling
Electron phonon interactions
Electronic structure
Electrons
High entropy alloys
Parameters
Phonons
Pressure effects
Specific heat
Superconductivity
title Pressure effects on the electronic structure and superconductivity of (TaNb)\(_{0.67}\)(HfZrTi)\(_{0.33}\) high entropy alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T02%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure%20effects%20on%20the%20electronic%20structure%20and%20superconductivity%20of%20(TaNb)%5C(_%7B0.67%7D%5C)(HfZrTi)%5C(_%7B0.33%7D%5C)%20high%20entropy%20alloy&rft.jtitle=arXiv.org&rft.au=Jasiewicz,%20K&rft.date=2019-10-18&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1910.08312&rft_dat=%3Cproquest%3E2307247956%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-414b7232f3aa729e1207747f0ca54292e501b3665ee2c1b8adb475d16e96d3933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307247956&rft_id=info:pmid/&rfr_iscdi=true