Loading…

2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing

Rail wheel contact at switches and crossings (S&Cs) induces impact stresses along with rolling contact stresses, resulting in plastic deformation and eventually crack formation. Damaged and deformed wing rails of a manganese steel crossing are studied and the microstructure, hardness and 3D crac...

Full description

Saved in:
Bibliographic Details
Published in:Wear 2019-10, Vol.436-437, p.202959, Article 202959
Main Authors: Dhar, S., Danielsen, H.K., Fæster, S., Rasmussen, C.J., Juul Jensen, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563
cites cdi_FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563
container_end_page
container_issue
container_start_page 202959
container_title Wear
container_volume 436-437
creator Dhar, S.
Danielsen, H.K.
Fæster, S.
Rasmussen, C.J.
Juul Jensen, D.
description Rail wheel contact at switches and crossings (S&Cs) induces impact stresses along with rolling contact stresses, resulting in plastic deformation and eventually crack formation. Damaged and deformed wing rails of a manganese steel crossing are studied and the microstructure, hardness and 3D crack network within the steel are characterized. It is found that the surface of the rail receives the maximum deformation resulting in a hardened top layer. The deformation is manifested by a high density of twins and dislocation boundaries in the microstructure. A complex crack network is revealed in high resolution by X-ray tomography. •For Manganese steel, damage in the wing rail is similar to that in the nose rail.•The depth of work hardening reaches a depth of 10 mm and 600Hv at the surface.•It can be assumed the impact from the wheel causes the crack formation.•3D mapping of the crack network reveal presence of surface and sub-surface cracks.•The crack network appears similar to that of normal straight track pearlitic steel.
doi_str_mv 10.1016/j.wear.2019.202959
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307383988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043164819301516</els_id><sourcerecordid>2307383988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssU7xo4kdiQ1qeUmV2MDacuxJcUjtYqdU8PU4lDWbGWnm3HlchC4pmVFCq-tutgcdZ4zQOgdWl_URmlApeMFKIY7RhJA5L2g1l6foLKWOkEyW1QR1bIm1t5gvsXnTUZsBovvWgwsehxbH0PfOr7EJfsg93ObOegfYZPI9YefxRvu19pAApwGgx_sRj9r1CbcxbLDObEgpV8_RSav7BBd_eYpe7-9eFo_F6vnhaXG7KgwXbCjKWlpbEysBStZKU9ZNw7mlTGgmG5FflPOaUNCGGq7bxgJtgJWSGsEslBWfoqvD3G0MHztIg-rCLvq8UjFOBJe8ljJT7ED9nhehVdvoNjp-KUrU6Knq1OipGj1VB0-z6OYggnz_p4OoknHgDVgXwQzKBvef_AfOL4Bl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307383988</pqid></control><display><type>article</type><title>2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing</title><source>ScienceDirect Journals</source><creator>Dhar, S. ; Danielsen, H.K. ; Fæster, S. ; Rasmussen, C.J. ; Juul Jensen, D.</creator><creatorcontrib>Dhar, S. ; Danielsen, H.K. ; Fæster, S. ; Rasmussen, C.J. ; Juul Jensen, D.</creatorcontrib><description>Rail wheel contact at switches and crossings (S&amp;Cs) induces impact stresses along with rolling contact stresses, resulting in plastic deformation and eventually crack formation. Damaged and deformed wing rails of a manganese steel crossing are studied and the microstructure, hardness and 3D crack network within the steel are characterized. It is found that the surface of the rail receives the maximum deformation resulting in a hardened top layer. The deformation is manifested by a high density of twins and dislocation boundaries in the microstructure. A complex crack network is revealed in high resolution by X-ray tomography. •For Manganese steel, damage in the wing rail is similar to that in the nose rail.•The depth of work hardening reaches a depth of 10 mm and 600Hv at the surface.•It can be assumed the impact from the wheel causes the crack formation.•3D mapping of the crack network reveal presence of surface and sub-surface cracks.•The crack network appears similar to that of normal straight track pearlitic steel.</description><identifier>ISSN: 0043-1648</identifier><identifier>EISSN: 1873-2577</identifier><identifier>DOI: 10.1016/j.wear.2019.202959</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>2D &amp; 3D crack network ; 3D X-Ray tomography ; Contact stresses ; Crack propagation ; Deformation ; Dislocation density ; Fatigue cracks ; Fatigue failure ; Fracture mechanics ; Manganese steel ; Manganese steels ; Metal fatigue ; Microstructure ; Plastic deformation ; Rails ; Rolling contact ; Rolling contact fatigue (RCF) ; Structural steels ; Switches ; Switches and crossings (S&amp;Cs)</subject><ispartof>Wear, 2019-10, Vol.436-437, p.202959, Article 202959</ispartof><rights>2019</rights><rights>Copyright Elsevier Science Ltd. Oct 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563</citedby><cites>FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dhar, S.</creatorcontrib><creatorcontrib>Danielsen, H.K.</creatorcontrib><creatorcontrib>Fæster, S.</creatorcontrib><creatorcontrib>Rasmussen, C.J.</creatorcontrib><creatorcontrib>Juul Jensen, D.</creatorcontrib><title>2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing</title><title>Wear</title><description>Rail wheel contact at switches and crossings (S&amp;Cs) induces impact stresses along with rolling contact stresses, resulting in plastic deformation and eventually crack formation. Damaged and deformed wing rails of a manganese steel crossing are studied and the microstructure, hardness and 3D crack network within the steel are characterized. It is found that the surface of the rail receives the maximum deformation resulting in a hardened top layer. The deformation is manifested by a high density of twins and dislocation boundaries in the microstructure. A complex crack network is revealed in high resolution by X-ray tomography. •For Manganese steel, damage in the wing rail is similar to that in the nose rail.•The depth of work hardening reaches a depth of 10 mm and 600Hv at the surface.•It can be assumed the impact from the wheel causes the crack formation.•3D mapping of the crack network reveal presence of surface and sub-surface cracks.•The crack network appears similar to that of normal straight track pearlitic steel.</description><subject>2D &amp; 3D crack network</subject><subject>3D X-Ray tomography</subject><subject>Contact stresses</subject><subject>Crack propagation</subject><subject>Deformation</subject><subject>Dislocation density</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Manganese steel</subject><subject>Manganese steels</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Plastic deformation</subject><subject>Rails</subject><subject>Rolling contact</subject><subject>Rolling contact fatigue (RCF)</subject><subject>Structural steels</subject><subject>Switches</subject><subject>Switches and crossings (S&amp;Cs)</subject><issn>0043-1648</issn><issn>1873-2577</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssU7xo4kdiQ1qeUmV2MDacuxJcUjtYqdU8PU4lDWbGWnm3HlchC4pmVFCq-tutgcdZ4zQOgdWl_URmlApeMFKIY7RhJA5L2g1l6foLKWOkEyW1QR1bIm1t5gvsXnTUZsBovvWgwsehxbH0PfOr7EJfsg93ObOegfYZPI9YefxRvu19pAApwGgx_sRj9r1CbcxbLDObEgpV8_RSav7BBd_eYpe7-9eFo_F6vnhaXG7KgwXbCjKWlpbEysBStZKU9ZNw7mlTGgmG5FflPOaUNCGGq7bxgJtgJWSGsEslBWfoqvD3G0MHztIg-rCLvq8UjFOBJe8ljJT7ED9nhehVdvoNjp-KUrU6Knq1OipGj1VB0-z6OYggnz_p4OoknHgDVgXwQzKBvef_AfOL4Bl</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Dhar, S.</creator><creator>Danielsen, H.K.</creator><creator>Fæster, S.</creator><creator>Rasmussen, C.J.</creator><creator>Juul Jensen, D.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20191015</creationdate><title>2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing</title><author>Dhar, S. ; Danielsen, H.K. ; Fæster, S. ; Rasmussen, C.J. ; Juul Jensen, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2D &amp; 3D crack network</topic><topic>3D X-Ray tomography</topic><topic>Contact stresses</topic><topic>Crack propagation</topic><topic>Deformation</topic><topic>Dislocation density</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Manganese steel</topic><topic>Manganese steels</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Plastic deformation</topic><topic>Rails</topic><topic>Rolling contact</topic><topic>Rolling contact fatigue (RCF)</topic><topic>Structural steels</topic><topic>Switches</topic><topic>Switches and crossings (S&amp;Cs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhar, S.</creatorcontrib><creatorcontrib>Danielsen, H.K.</creatorcontrib><creatorcontrib>Fæster, S.</creatorcontrib><creatorcontrib>Rasmussen, C.J.</creatorcontrib><creatorcontrib>Juul Jensen, D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wear</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhar, S.</au><au>Danielsen, H.K.</au><au>Fæster, S.</au><au>Rasmussen, C.J.</au><au>Juul Jensen, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing</atitle><jtitle>Wear</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>436-437</volume><spage>202959</spage><pages>202959-</pages><artnum>202959</artnum><issn>0043-1648</issn><eissn>1873-2577</eissn><abstract>Rail wheel contact at switches and crossings (S&amp;Cs) induces impact stresses along with rolling contact stresses, resulting in plastic deformation and eventually crack formation. Damaged and deformed wing rails of a manganese steel crossing are studied and the microstructure, hardness and 3D crack network within the steel are characterized. It is found that the surface of the rail receives the maximum deformation resulting in a hardened top layer. The deformation is manifested by a high density of twins and dislocation boundaries in the microstructure. A complex crack network is revealed in high resolution by X-ray tomography. •For Manganese steel, damage in the wing rail is similar to that in the nose rail.•The depth of work hardening reaches a depth of 10 mm and 600Hv at the surface.•It can be assumed the impact from the wheel causes the crack formation.•3D mapping of the crack network reveal presence of surface and sub-surface cracks.•The crack network appears similar to that of normal straight track pearlitic steel.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wear.2019.202959</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1648
ispartof Wear, 2019-10, Vol.436-437, p.202959, Article 202959
issn 0043-1648
1873-2577
language eng
recordid cdi_proquest_journals_2307383988
source ScienceDirect Journals
subjects 2D & 3D crack network
3D X-Ray tomography
Contact stresses
Crack propagation
Deformation
Dislocation density
Fatigue cracks
Fatigue failure
Fracture mechanics
Manganese steel
Manganese steels
Metal fatigue
Microstructure
Plastic deformation
Rails
Rolling contact
Rolling contact fatigue (RCF)
Structural steels
Switches
Switches and crossings (S&Cs)
title 2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20and%203D%20characterization%20of%20rolling%20contact%20fatigue%20cracks%20in%20manganese%20steel%20wing%20rails%20from%20a%20crossing&rft.jtitle=Wear&rft.au=Dhar,%20S.&rft.date=2019-10-15&rft.volume=436-437&rft.spage=202959&rft.pages=202959-&rft.artnum=202959&rft.issn=0043-1648&rft.eissn=1873-2577&rft_id=info:doi/10.1016/j.wear.2019.202959&rft_dat=%3Cproquest_cross%3E2307383988%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307383988&rft_id=info:pmid/&rfr_iscdi=true