Loading…
2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing
Rail wheel contact at switches and crossings (S&Cs) induces impact stresses along with rolling contact stresses, resulting in plastic deformation and eventually crack formation. Damaged and deformed wing rails of a manganese steel crossing are studied and the microstructure, hardness and 3D crac...
Saved in:
Published in: | Wear 2019-10, Vol.436-437, p.202959, Article 202959 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563 |
container_end_page | |
container_issue | |
container_start_page | 202959 |
container_title | Wear |
container_volume | 436-437 |
creator | Dhar, S. Danielsen, H.K. Fæster, S. Rasmussen, C.J. Juul Jensen, D. |
description | Rail wheel contact at switches and crossings (S&Cs) induces impact stresses along with rolling contact stresses, resulting in plastic deformation and eventually crack formation. Damaged and deformed wing rails of a manganese steel crossing are studied and the microstructure, hardness and 3D crack network within the steel are characterized. It is found that the surface of the rail receives the maximum deformation resulting in a hardened top layer. The deformation is manifested by a high density of twins and dislocation boundaries in the microstructure. A complex crack network is revealed in high resolution by X-ray tomography.
•For Manganese steel, damage in the wing rail is similar to that in the nose rail.•The depth of work hardening reaches a depth of 10 mm and 600Hv at the surface.•It can be assumed the impact from the wheel causes the crack formation.•3D mapping of the crack network reveal presence of surface and sub-surface cracks.•The crack network appears similar to that of normal straight track pearlitic steel. |
doi_str_mv | 10.1016/j.wear.2019.202959 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307383988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043164819301516</els_id><sourcerecordid>2307383988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssU7xo4kdiQ1qeUmV2MDacuxJcUjtYqdU8PU4lDWbGWnm3HlchC4pmVFCq-tutgcdZ4zQOgdWl_URmlApeMFKIY7RhJA5L2g1l6foLKWOkEyW1QR1bIm1t5gvsXnTUZsBovvWgwsehxbH0PfOr7EJfsg93ObOegfYZPI9YefxRvu19pAApwGgx_sRj9r1CbcxbLDObEgpV8_RSav7BBd_eYpe7-9eFo_F6vnhaXG7KgwXbCjKWlpbEysBStZKU9ZNw7mlTGgmG5FflPOaUNCGGq7bxgJtgJWSGsEslBWfoqvD3G0MHztIg-rCLvq8UjFOBJe8ljJT7ED9nhehVdvoNjp-KUrU6Knq1OipGj1VB0-z6OYggnz_p4OoknHgDVgXwQzKBvef_AfOL4Bl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307383988</pqid></control><display><type>article</type><title>2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing</title><source>ScienceDirect Journals</source><creator>Dhar, S. ; Danielsen, H.K. ; Fæster, S. ; Rasmussen, C.J. ; Juul Jensen, D.</creator><creatorcontrib>Dhar, S. ; Danielsen, H.K. ; Fæster, S. ; Rasmussen, C.J. ; Juul Jensen, D.</creatorcontrib><description>Rail wheel contact at switches and crossings (S&Cs) induces impact stresses along with rolling contact stresses, resulting in plastic deformation and eventually crack formation. Damaged and deformed wing rails of a manganese steel crossing are studied and the microstructure, hardness and 3D crack network within the steel are characterized. It is found that the surface of the rail receives the maximum deformation resulting in a hardened top layer. The deformation is manifested by a high density of twins and dislocation boundaries in the microstructure. A complex crack network is revealed in high resolution by X-ray tomography.
•For Manganese steel, damage in the wing rail is similar to that in the nose rail.•The depth of work hardening reaches a depth of 10 mm and 600Hv at the surface.•It can be assumed the impact from the wheel causes the crack formation.•3D mapping of the crack network reveal presence of surface and sub-surface cracks.•The crack network appears similar to that of normal straight track pearlitic steel.</description><identifier>ISSN: 0043-1648</identifier><identifier>EISSN: 1873-2577</identifier><identifier>DOI: 10.1016/j.wear.2019.202959</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>2D & 3D crack network ; 3D X-Ray tomography ; Contact stresses ; Crack propagation ; Deformation ; Dislocation density ; Fatigue cracks ; Fatigue failure ; Fracture mechanics ; Manganese steel ; Manganese steels ; Metal fatigue ; Microstructure ; Plastic deformation ; Rails ; Rolling contact ; Rolling contact fatigue (RCF) ; Structural steels ; Switches ; Switches and crossings (S&Cs)</subject><ispartof>Wear, 2019-10, Vol.436-437, p.202959, Article 202959</ispartof><rights>2019</rights><rights>Copyright Elsevier Science Ltd. Oct 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563</citedby><cites>FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dhar, S.</creatorcontrib><creatorcontrib>Danielsen, H.K.</creatorcontrib><creatorcontrib>Fæster, S.</creatorcontrib><creatorcontrib>Rasmussen, C.J.</creatorcontrib><creatorcontrib>Juul Jensen, D.</creatorcontrib><title>2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing</title><title>Wear</title><description>Rail wheel contact at switches and crossings (S&Cs) induces impact stresses along with rolling contact stresses, resulting in plastic deformation and eventually crack formation. Damaged and deformed wing rails of a manganese steel crossing are studied and the microstructure, hardness and 3D crack network within the steel are characterized. It is found that the surface of the rail receives the maximum deformation resulting in a hardened top layer. The deformation is manifested by a high density of twins and dislocation boundaries in the microstructure. A complex crack network is revealed in high resolution by X-ray tomography.
•For Manganese steel, damage in the wing rail is similar to that in the nose rail.•The depth of work hardening reaches a depth of 10 mm and 600Hv at the surface.•It can be assumed the impact from the wheel causes the crack formation.•3D mapping of the crack network reveal presence of surface and sub-surface cracks.•The crack network appears similar to that of normal straight track pearlitic steel.</description><subject>2D & 3D crack network</subject><subject>3D X-Ray tomography</subject><subject>Contact stresses</subject><subject>Crack propagation</subject><subject>Deformation</subject><subject>Dislocation density</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Manganese steel</subject><subject>Manganese steels</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Plastic deformation</subject><subject>Rails</subject><subject>Rolling contact</subject><subject>Rolling contact fatigue (RCF)</subject><subject>Structural steels</subject><subject>Switches</subject><subject>Switches and crossings (S&Cs)</subject><issn>0043-1648</issn><issn>1873-2577</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssU7xo4kdiQ1qeUmV2MDacuxJcUjtYqdU8PU4lDWbGWnm3HlchC4pmVFCq-tutgcdZ4zQOgdWl_URmlApeMFKIY7RhJA5L2g1l6foLKWOkEyW1QR1bIm1t5gvsXnTUZsBovvWgwsehxbH0PfOr7EJfsg93ObOegfYZPI9YefxRvu19pAApwGgx_sRj9r1CbcxbLDObEgpV8_RSav7BBd_eYpe7-9eFo_F6vnhaXG7KgwXbCjKWlpbEysBStZKU9ZNw7mlTGgmG5FflPOaUNCGGq7bxgJtgJWSGsEslBWfoqvD3G0MHztIg-rCLvq8UjFOBJe8ljJT7ED9nhehVdvoNjp-KUrU6Knq1OipGj1VB0-z6OYggnz_p4OoknHgDVgXwQzKBvef_AfOL4Bl</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Dhar, S.</creator><creator>Danielsen, H.K.</creator><creator>Fæster, S.</creator><creator>Rasmussen, C.J.</creator><creator>Juul Jensen, D.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20191015</creationdate><title>2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing</title><author>Dhar, S. ; Danielsen, H.K. ; Fæster, S. ; Rasmussen, C.J. ; Juul Jensen, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2D & 3D crack network</topic><topic>3D X-Ray tomography</topic><topic>Contact stresses</topic><topic>Crack propagation</topic><topic>Deformation</topic><topic>Dislocation density</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Manganese steel</topic><topic>Manganese steels</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Plastic deformation</topic><topic>Rails</topic><topic>Rolling contact</topic><topic>Rolling contact fatigue (RCF)</topic><topic>Structural steels</topic><topic>Switches</topic><topic>Switches and crossings (S&Cs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhar, S.</creatorcontrib><creatorcontrib>Danielsen, H.K.</creatorcontrib><creatorcontrib>Fæster, S.</creatorcontrib><creatorcontrib>Rasmussen, C.J.</creatorcontrib><creatorcontrib>Juul Jensen, D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wear</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhar, S.</au><au>Danielsen, H.K.</au><au>Fæster, S.</au><au>Rasmussen, C.J.</au><au>Juul Jensen, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing</atitle><jtitle>Wear</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>436-437</volume><spage>202959</spage><pages>202959-</pages><artnum>202959</artnum><issn>0043-1648</issn><eissn>1873-2577</eissn><abstract>Rail wheel contact at switches and crossings (S&Cs) induces impact stresses along with rolling contact stresses, resulting in plastic deformation and eventually crack formation. Damaged and deformed wing rails of a manganese steel crossing are studied and the microstructure, hardness and 3D crack network within the steel are characterized. It is found that the surface of the rail receives the maximum deformation resulting in a hardened top layer. The deformation is manifested by a high density of twins and dislocation boundaries in the microstructure. A complex crack network is revealed in high resolution by X-ray tomography.
•For Manganese steel, damage in the wing rail is similar to that in the nose rail.•The depth of work hardening reaches a depth of 10 mm and 600Hv at the surface.•It can be assumed the impact from the wheel causes the crack formation.•3D mapping of the crack network reveal presence of surface and sub-surface cracks.•The crack network appears similar to that of normal straight track pearlitic steel.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wear.2019.202959</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1648 |
ispartof | Wear, 2019-10, Vol.436-437, p.202959, Article 202959 |
issn | 0043-1648 1873-2577 |
language | eng |
recordid | cdi_proquest_journals_2307383988 |
source | ScienceDirect Journals |
subjects | 2D & 3D crack network 3D X-Ray tomography Contact stresses Crack propagation Deformation Dislocation density Fatigue cracks Fatigue failure Fracture mechanics Manganese steel Manganese steels Metal fatigue Microstructure Plastic deformation Rails Rolling contact Rolling contact fatigue (RCF) Structural steels Switches Switches and crossings (S&Cs) |
title | 2D and 3D characterization of rolling contact fatigue cracks in manganese steel wing rails from a crossing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A39%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D%20and%203D%20characterization%20of%20rolling%20contact%20fatigue%20cracks%20in%20manganese%20steel%20wing%20rails%20from%20a%20crossing&rft.jtitle=Wear&rft.au=Dhar,%20S.&rft.date=2019-10-15&rft.volume=436-437&rft.spage=202959&rft.pages=202959-&rft.artnum=202959&rft.issn=0043-1648&rft.eissn=1873-2577&rft_id=info:doi/10.1016/j.wear.2019.202959&rft_dat=%3Cproquest_cross%3E2307383988%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-598dd90d8ee52f8c59bb33d127a28b720184901eac1c3afbde1be2581c72de563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307383988&rft_id=info:pmid/&rfr_iscdi=true |