Loading…

On approximation of the rate of convergence of Fourier series in the generalized Hölder metric by Deferred Nörlund mean

In this paper, we have studied an estimate of the rate of convergence of Fourier series in the generalized Hölder metric H L r ( ω ) space by using deferred Nörlund mean and established some new results. Our results are more advanced that generalize and unify many other results available in the lite...

Full description

Saved in:
Bibliographic Details
Published in:Afrika mathematica 2019-11, Vol.30 (7-8), p.1119-1131
Main Authors: Pradhan, T., Jena, B. B., Paikray, S. K., Dutta, H., Misra, U. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e2ef433ad62c80515edf59e4a68e19a2a5ef06973bdd3f189d0f2c6158272c6a3
cites cdi_FETCH-LOGICAL-c319t-e2ef433ad62c80515edf59e4a68e19a2a5ef06973bdd3f189d0f2c6158272c6a3
container_end_page 1131
container_issue 7-8
container_start_page 1119
container_title Afrika mathematica
container_volume 30
creator Pradhan, T.
Jena, B. B.
Paikray, S. K.
Dutta, H.
Misra, U. K.
description In this paper, we have studied an estimate of the rate of convergence of Fourier series in the generalized Hölder metric H L r ( ω ) space by using deferred Nörlund mean and established some new results. Our results are more advanced that generalize and unify many other results available in the literature.
doi_str_mv 10.1007/s13370-019-00706-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2307445026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307445026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e2ef433ad62c80515edf59e4a68e19a2a5ef06973bdd3f189d0f2c6158272c6a3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKU_wMkSZ4MfsRMfUaEUqaIXOFtusi6pUqfYKSJ8WH-gP4bbInFjL7OrmdnVDkLXjN4ySvO7yITIKaFMkzRSRfozNOBMU5IrVZyjAaOME51ReYlGMa5oqkwxJcUA9XOP7WYT2q96bbu69bh1uHsHHGwHh75s_SeEJfjyOE7abagh4AgJIq79UZxoCLapv6HC0_2uqZJiDV2oS7zo8QM4CCFRL_tdaLa-Spz1V-jC2SbC6BeH6G3y-Dqektn86Xl8PyOlYLojwMFlQthK8bKgkkmonNSQWVUA05ZbCY4qnYtFVQnHCl1Rx0vFZMHzhFYM0c1pb3ryYwuxM6v0g08nDRc0zzJJuUoqflKVoY0xgDObkBIJvWHUHFI2p5RNStkcUzZ9MomTKSaxX0L4W_2P6weJBYKi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307445026</pqid></control><display><type>article</type><title>On approximation of the rate of convergence of Fourier series in the generalized Hölder metric by Deferred Nörlund mean</title><source>Springer Nature</source><creator>Pradhan, T. ; Jena, B. B. ; Paikray, S. K. ; Dutta, H. ; Misra, U. K.</creator><creatorcontrib>Pradhan, T. ; Jena, B. B. ; Paikray, S. K. ; Dutta, H. ; Misra, U. K.</creatorcontrib><description>In this paper, we have studied an estimate of the rate of convergence of Fourier series in the generalized Hölder metric H L r ( ω ) space by using deferred Nörlund mean and established some new results. Our results are more advanced that generalize and unify many other results available in the literature.</description><identifier>ISSN: 1012-9405</identifier><identifier>EISSN: 2190-7668</identifier><identifier>DOI: 10.1007/s13370-019-00706-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Convergence ; Economic models ; Fourier series ; History of Mathematical Sciences ; Mathematics ; Mathematics and Statistics ; Mathematics Education</subject><ispartof>Afrika mathematica, 2019-11, Vol.30 (7-8), p.1119-1131</ispartof><rights>African Mathematical Union and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e2ef433ad62c80515edf59e4a68e19a2a5ef06973bdd3f189d0f2c6158272c6a3</citedby><cites>FETCH-LOGICAL-c319t-e2ef433ad62c80515edf59e4a68e19a2a5ef06973bdd3f189d0f2c6158272c6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pradhan, T.</creatorcontrib><creatorcontrib>Jena, B. B.</creatorcontrib><creatorcontrib>Paikray, S. K.</creatorcontrib><creatorcontrib>Dutta, H.</creatorcontrib><creatorcontrib>Misra, U. K.</creatorcontrib><title>On approximation of the rate of convergence of Fourier series in the generalized Hölder metric by Deferred Nörlund mean</title><title>Afrika mathematica</title><addtitle>Afr. Mat</addtitle><description>In this paper, we have studied an estimate of the rate of convergence of Fourier series in the generalized Hölder metric H L r ( ω ) space by using deferred Nörlund mean and established some new results. Our results are more advanced that generalize and unify many other results available in the literature.</description><subject>Applications of Mathematics</subject><subject>Convergence</subject><subject>Economic models</subject><subject>Fourier series</subject><subject>History of Mathematical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics Education</subject><issn>1012-9405</issn><issn>2190-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIVKU_wMkSZ4MfsRMfUaEUqaIXOFtusi6pUqfYKSJ8WH-gP4bbInFjL7OrmdnVDkLXjN4ySvO7yITIKaFMkzRSRfozNOBMU5IrVZyjAaOME51ReYlGMa5oqkwxJcUA9XOP7WYT2q96bbu69bh1uHsHHGwHh75s_SeEJfjyOE7abagh4AgJIq79UZxoCLapv6HC0_2uqZJiDV2oS7zo8QM4CCFRL_tdaLa-Spz1V-jC2SbC6BeH6G3y-Dqektn86Xl8PyOlYLojwMFlQthK8bKgkkmonNSQWVUA05ZbCY4qnYtFVQnHCl1Rx0vFZMHzhFYM0c1pb3ryYwuxM6v0g08nDRc0zzJJuUoqflKVoY0xgDObkBIJvWHUHFI2p5RNStkcUzZ9MomTKSaxX0L4W_2P6weJBYKi</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Pradhan, T.</creator><creator>Jena, B. B.</creator><creator>Paikray, S. K.</creator><creator>Dutta, H.</creator><creator>Misra, U. K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>On approximation of the rate of convergence of Fourier series in the generalized Hölder metric by Deferred Nörlund mean</title><author>Pradhan, T. ; Jena, B. B. ; Paikray, S. K. ; Dutta, H. ; Misra, U. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e2ef433ad62c80515edf59e4a68e19a2a5ef06973bdd3f189d0f2c6158272c6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Convergence</topic><topic>Economic models</topic><topic>Fourier series</topic><topic>History of Mathematical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics Education</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradhan, T.</creatorcontrib><creatorcontrib>Jena, B. B.</creatorcontrib><creatorcontrib>Paikray, S. K.</creatorcontrib><creatorcontrib>Dutta, H.</creatorcontrib><creatorcontrib>Misra, U. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Afrika mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradhan, T.</au><au>Jena, B. B.</au><au>Paikray, S. K.</au><au>Dutta, H.</au><au>Misra, U. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On approximation of the rate of convergence of Fourier series in the generalized Hölder metric by Deferred Nörlund mean</atitle><jtitle>Afrika mathematica</jtitle><stitle>Afr. Mat</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>30</volume><issue>7-8</issue><spage>1119</spage><epage>1131</epage><pages>1119-1131</pages><issn>1012-9405</issn><eissn>2190-7668</eissn><abstract>In this paper, we have studied an estimate of the rate of convergence of Fourier series in the generalized Hölder metric H L r ( ω ) space by using deferred Nörlund mean and established some new results. Our results are more advanced that generalize and unify many other results available in the literature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13370-019-00706-y</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1012-9405
ispartof Afrika mathematica, 2019-11, Vol.30 (7-8), p.1119-1131
issn 1012-9405
2190-7668
language eng
recordid cdi_proquest_journals_2307445026
source Springer Nature
subjects Applications of Mathematics
Convergence
Economic models
Fourier series
History of Mathematical Sciences
Mathematics
Mathematics and Statistics
Mathematics Education
title On approximation of the rate of convergence of Fourier series in the generalized Hölder metric by Deferred Nörlund mean
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20approximation%20of%20the%20rate%20of%20convergence%20of%20Fourier%20series%20in%20the%20generalized%20H%C3%B6lder%20metric%20by%20Deferred%20N%C3%B6rlund%20mean&rft.jtitle=Afrika%20mathematica&rft.au=Pradhan,%20T.&rft.date=2019-11-01&rft.volume=30&rft.issue=7-8&rft.spage=1119&rft.epage=1131&rft.pages=1119-1131&rft.issn=1012-9405&rft.eissn=2190-7668&rft_id=info:doi/10.1007/s13370-019-00706-y&rft_dat=%3Cproquest_cross%3E2307445026%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e2ef433ad62c80515edf59e4a68e19a2a5ef06973bdd3f189d0f2c6158272c6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307445026&rft_id=info:pmid/&rfr_iscdi=true