Loading…
Équirépartition de sommes exponentielles (travaux de Katz)
Many exponential sums over finite fields, including Gauss sums and Kloosterman sums, arise as the Fourier transform with respect to a character of the trace function of an \(\ell\)-adic sheaf on a commutative algebraic group. We study the equidistribution of these sums when the sheaf is fixed but th...
Saved in:
Published in: | arXiv.org 2019-11 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fresán, Javier |
description | Many exponential sums over finite fields, including Gauss sums and Kloosterman sums, arise as the Fourier transform with respect to a character of the trace function of an \(\ell\)-adic sheaf on a commutative algebraic group. We study the equidistribution of these sums when the sheaf is fixed but the character varies over larger and larger extensions of the finite field. For the additive group, monodromy governs equidistribution by a theorem of Deligne. A few years ago, Katz solved the multiplicative variant of the question in a work where Tannakian ideas play an essential role. |
doi_str_mv | 10.48550/arxiv.1910.08572 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2307555492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307555492</sourcerecordid><originalsourceid>FETCH-proquest_journals_23075554923</originalsourceid><addsrcrecordid>eNpjYJA0NNAzsTA1NdBPLKrILNMztAQKGFiYmhsxMXAaGRsb6lqYGBlxMPAWF2cZGBgYmZkbmZoaczLYHO4sLM0sOryyILGoJLMkMz9PISVVoTg_Nze1WCG1oiA_LzWvJDM1JwfI1SgpSixLLK0AqfBOLKnS5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNjA3NTU1MTSyNj4lQBAPwfP2c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307555492</pqid></control><display><type>article</type><title>Équirépartition de sommes exponentielles (travaux de Katz)</title><source>Publicly Available Content Database</source><creator>Fresán, Javier</creator><creatorcontrib>Fresán, Javier</creatorcontrib><description>Many exponential sums over finite fields, including Gauss sums and Kloosterman sums, arise as the Fourier transform with respect to a character of the trace function of an \(\ell\)-adic sheaf on a commutative algebraic group. We study the equidistribution of these sums when the sheaf is fixed but the character varies over larger and larger extensions of the finite field. For the additive group, monodromy governs equidistribution by a theorem of Deligne. A few years ago, Katz solved the multiplicative variant of the question in a work where Tannakian ideas play an essential role.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1910.08572</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fields (mathematics) ; Fourier transforms ; Group theory ; Sums</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2307555492?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Fresán, Javier</creatorcontrib><title>Équirépartition de sommes exponentielles (travaux de Katz)</title><title>arXiv.org</title><description>Many exponential sums over finite fields, including Gauss sums and Kloosterman sums, arise as the Fourier transform with respect to a character of the trace function of an \(\ell\)-adic sheaf on a commutative algebraic group. We study the equidistribution of these sums when the sheaf is fixed but the character varies over larger and larger extensions of the finite field. For the additive group, monodromy governs equidistribution by a theorem of Deligne. A few years ago, Katz solved the multiplicative variant of the question in a work where Tannakian ideas play an essential role.</description><subject>Fields (mathematics)</subject><subject>Fourier transforms</subject><subject>Group theory</subject><subject>Sums</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYJA0NNAzsTA1NdBPLKrILNMztAQKGFiYmhsxMXAaGRsb6lqYGBlxMPAWF2cZGBgYmZkbmZoaczLYHO4sLM0sOryyILGoJLMkMz9PISVVoTg_Nze1WCG1oiA_LzWvJDM1JwfI1SgpSixLLK0AqfBOLKnS5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCNjA3NTU1MTSyNj4lQBAPwfP2c</recordid><startdate>20191127</startdate><enddate>20191127</enddate><creator>Fresán, Javier</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191127</creationdate><title>Équirépartition de sommes exponentielles (travaux de Katz)</title><author>Fresán, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23075554923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Fields (mathematics)</topic><topic>Fourier transforms</topic><topic>Group theory</topic><topic>Sums</topic><toplevel>online_resources</toplevel><creatorcontrib>Fresán, Javier</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fresán, Javier</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Équirépartition de sommes exponentielles (travaux de Katz)</atitle><jtitle>arXiv.org</jtitle><date>2019-11-27</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Many exponential sums over finite fields, including Gauss sums and Kloosterman sums, arise as the Fourier transform with respect to a character of the trace function of an \(\ell\)-adic sheaf on a commutative algebraic group. We study the equidistribution of these sums when the sheaf is fixed but the character varies over larger and larger extensions of the finite field. For the additive group, monodromy governs equidistribution by a theorem of Deligne. A few years ago, Katz solved the multiplicative variant of the question in a work where Tannakian ideas play an essential role.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1910.08572</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2307555492 |
source | Publicly Available Content Database |
subjects | Fields (mathematics) Fourier transforms Group theory Sums |
title | Équirépartition de sommes exponentielles (travaux de Katz) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=%C3%89quir%C3%A9partition%20de%20sommes%20exponentielles%20(travaux%20de%20Katz)&rft.jtitle=arXiv.org&rft.au=Fres%C3%A1n,%20Javier&rft.date=2019-11-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1910.08572&rft_dat=%3Cproquest%3E2307555492%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23075554923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307555492&rft_id=info:pmid/&rfr_iscdi=true |