Loading…

Controlled nonlinear magnetic damping in spin-Hall nano-devices

Large-amplitude magnetization dynamics is substantially more complex compared to the low-amplitude linear regime, due to the inevitable emergence of nonlinearities. One of the fundamental nonlinear phenomena is the nonlinear damping enhancement, which imposes strict limitations on the operation and...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-10
Main Authors: Divinskiy, Boris, Urazhdin, Sergei, Demokritov, Sergej O, Demidov, Vladislav E
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Divinskiy, Boris
Urazhdin, Sergei
Demokritov, Sergej O
Demidov, Vladislav E
description Large-amplitude magnetization dynamics is substantially more complex compared to the low-amplitude linear regime, due to the inevitable emergence of nonlinearities. One of the fundamental nonlinear phenomena is the nonlinear damping enhancement, which imposes strict limitations on the operation and efficiency of magnetic nanodevices. In particular, nonlinear damping prevents excitation of coherent magnetization auto-oscillations driven by the injection of spin current into spatially extended magnetic regions. Here, we propose and experimentally demonstrate that nonlinear damping can be controlled by the ellipticity of magnetization precession. By balancing different contributions to anisotropy, we minimize the ellipticity and achieve coherent magnetization oscillations driven by spatially extended spin current injection into a microscopic magnetic disk. Our results provide a novel route for the implementation of efficient active spintronic and magnonic devices driven by spin current.
doi_str_mv 10.48550/arxiv.1910.09801
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2307882038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2307882038</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-db548aa0f26dfa76a8f6eb778da6453b745c0c33270e5c9d44aab19d679292593</originalsourceid><addsrcrecordid>eNotjc1KAzEURoMgWGofwF3Adeqd_GclMqgtFNx0X-5MMiUlTepkWnx8B3T1Hc7ifIQ8NbCWVil4wfEn3taNmwU4C80dWXAhGmYl5w9kVesJALg2XCmxIK9tydNYUgqe5pJTzAFHesZjDlPsqcfzJeYjjZnWGdgGU6IZc2E-3GIf6iO5HzDVsPrfJdl_vO_bDdt9fW7btx1DxS3znZIWEQau_YBGox106IyxHrVUojNS9dALwQ0E1TsvJWLXOK-N444rJ5bk-S97Gcv3NdTpcCrXMc-PBy7AWMtBWPELQZFKZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307882038</pqid></control><display><type>article</type><title>Controlled nonlinear magnetic damping in spin-Hall nano-devices</title><source>Publicly Available Content (ProQuest)</source><creator>Divinskiy, Boris ; Urazhdin, Sergei ; Demokritov, Sergej O ; Demidov, Vladislav E</creator><creatorcontrib>Divinskiy, Boris ; Urazhdin, Sergei ; Demokritov, Sergej O ; Demidov, Vladislav E</creatorcontrib><description>Large-amplitude magnetization dynamics is substantially more complex compared to the low-amplitude linear regime, due to the inevitable emergence of nonlinearities. One of the fundamental nonlinear phenomena is the nonlinear damping enhancement, which imposes strict limitations on the operation and efficiency of magnetic nanodevices. In particular, nonlinear damping prevents excitation of coherent magnetization auto-oscillations driven by the injection of spin current into spatially extended magnetic regions. Here, we propose and experimentally demonstrate that nonlinear damping can be controlled by the ellipticity of magnetization precession. By balancing different contributions to anisotropy, we minimize the ellipticity and achieve coherent magnetization oscillations driven by spatially extended spin current injection into a microscopic magnetic disk. Our results provide a novel route for the implementation of efficient active spintronic and magnonic devices driven by spin current.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1910.09801</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amplitudes ; Anisotropy ; Current injection ; Ellipticity ; Magnetic damping ; Magnetic disks ; Magnetism ; Magnetization ; Nanotechnology devices ; Nonlinear control ; Nonlinear phenomena ; Oscillations ; Spin dynamics ; Spintronics</subject><ispartof>arXiv.org, 2019-10</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2307882038?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Divinskiy, Boris</creatorcontrib><creatorcontrib>Urazhdin, Sergei</creatorcontrib><creatorcontrib>Demokritov, Sergej O</creatorcontrib><creatorcontrib>Demidov, Vladislav E</creatorcontrib><title>Controlled nonlinear magnetic damping in spin-Hall nano-devices</title><title>arXiv.org</title><description>Large-amplitude magnetization dynamics is substantially more complex compared to the low-amplitude linear regime, due to the inevitable emergence of nonlinearities. One of the fundamental nonlinear phenomena is the nonlinear damping enhancement, which imposes strict limitations on the operation and efficiency of magnetic nanodevices. In particular, nonlinear damping prevents excitation of coherent magnetization auto-oscillations driven by the injection of spin current into spatially extended magnetic regions. Here, we propose and experimentally demonstrate that nonlinear damping can be controlled by the ellipticity of magnetization precession. By balancing different contributions to anisotropy, we minimize the ellipticity and achieve coherent magnetization oscillations driven by spatially extended spin current injection into a microscopic magnetic disk. Our results provide a novel route for the implementation of efficient active spintronic and magnonic devices driven by spin current.</description><subject>Amplitudes</subject><subject>Anisotropy</subject><subject>Current injection</subject><subject>Ellipticity</subject><subject>Magnetic damping</subject><subject>Magnetic disks</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Nanotechnology devices</subject><subject>Nonlinear control</subject><subject>Nonlinear phenomena</subject><subject>Oscillations</subject><subject>Spin dynamics</subject><subject>Spintronics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1KAzEURoMgWGofwF3Adeqd_GclMqgtFNx0X-5MMiUlTepkWnx8B3T1Hc7ifIQ8NbCWVil4wfEn3taNmwU4C80dWXAhGmYl5w9kVesJALg2XCmxIK9tydNYUgqe5pJTzAFHesZjDlPsqcfzJeYjjZnWGdgGU6IZc2E-3GIf6iO5HzDVsPrfJdl_vO_bDdt9fW7btx1DxS3znZIWEQau_YBGox106IyxHrVUojNS9dALwQ0E1TsvJWLXOK-N444rJ5bk-S97Gcv3NdTpcCrXMc-PBy7AWMtBWPELQZFKZw</recordid><startdate>20191022</startdate><enddate>20191022</enddate><creator>Divinskiy, Boris</creator><creator>Urazhdin, Sergei</creator><creator>Demokritov, Sergej O</creator><creator>Demidov, Vladislav E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191022</creationdate><title>Controlled nonlinear magnetic damping in spin-Hall nano-devices</title><author>Divinskiy, Boris ; Urazhdin, Sergei ; Demokritov, Sergej O ; Demidov, Vladislav E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-db548aa0f26dfa76a8f6eb778da6453b745c0c33270e5c9d44aab19d679292593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amplitudes</topic><topic>Anisotropy</topic><topic>Current injection</topic><topic>Ellipticity</topic><topic>Magnetic damping</topic><topic>Magnetic disks</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Nanotechnology devices</topic><topic>Nonlinear control</topic><topic>Nonlinear phenomena</topic><topic>Oscillations</topic><topic>Spin dynamics</topic><topic>Spintronics</topic><toplevel>online_resources</toplevel><creatorcontrib>Divinskiy, Boris</creatorcontrib><creatorcontrib>Urazhdin, Sergei</creatorcontrib><creatorcontrib>Demokritov, Sergej O</creatorcontrib><creatorcontrib>Demidov, Vladislav E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Divinskiy, Boris</au><au>Urazhdin, Sergei</au><au>Demokritov, Sergej O</au><au>Demidov, Vladislav E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled nonlinear magnetic damping in spin-Hall nano-devices</atitle><jtitle>arXiv.org</jtitle><date>2019-10-22</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Large-amplitude magnetization dynamics is substantially more complex compared to the low-amplitude linear regime, due to the inevitable emergence of nonlinearities. One of the fundamental nonlinear phenomena is the nonlinear damping enhancement, which imposes strict limitations on the operation and efficiency of magnetic nanodevices. In particular, nonlinear damping prevents excitation of coherent magnetization auto-oscillations driven by the injection of spin current into spatially extended magnetic regions. Here, we propose and experimentally demonstrate that nonlinear damping can be controlled by the ellipticity of magnetization precession. By balancing different contributions to anisotropy, we minimize the ellipticity and achieve coherent magnetization oscillations driven by spatially extended spin current injection into a microscopic magnetic disk. Our results provide a novel route for the implementation of efficient active spintronic and magnonic devices driven by spin current.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1910.09801</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2307882038
source Publicly Available Content (ProQuest)
subjects Amplitudes
Anisotropy
Current injection
Ellipticity
Magnetic damping
Magnetic disks
Magnetism
Magnetization
Nanotechnology devices
Nonlinear control
Nonlinear phenomena
Oscillations
Spin dynamics
Spintronics
title Controlled nonlinear magnetic damping in spin-Hall nano-devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20nonlinear%20magnetic%20damping%20in%20spin-Hall%20nano-devices&rft.jtitle=arXiv.org&rft.au=Divinskiy,%20Boris&rft.date=2019-10-22&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1910.09801&rft_dat=%3Cproquest%3E2307882038%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-db548aa0f26dfa76a8f6eb778da6453b745c0c33270e5c9d44aab19d679292593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307882038&rft_id=info:pmid/&rfr_iscdi=true