Loading…

Measurement of Mechanical and Thermal Strains by Optical FBG Sensors Embedded in CFRP Rod

The present study intends to provide the photoelastic coefficient and thermal expansion coefficient needed to use an FBG-embedded CFRP rod (smart rod) as strain sensor. Due to the monolithic combination of the FBG sensor with a CFRP rod, the smart rod is likely to exhibit thermal and mechanical prop...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sensors 2019, Vol.2019 (2019), p.1-6
Main Authors: Cho, Jeong-Rae, Park, Young-Hwan, Kim, Sung Tae, Cho, Keunhee
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study intends to provide the photoelastic coefficient and thermal expansion coefficient needed to use an FBG-embedded CFRP rod (smart rod) as strain sensor. Due to the monolithic combination of the FBG sensor with a CFRP rod, the smart rod is likely to exhibit thermal and mechanical properties differing from those of the bare FBG sensor. A tensile test showed that the photoelastic coefficient of the smart rod is 0.204, which is about 7.3% lower than the 0.22 value of the bare optical FBG. Moreover, the thermal expansion coefficient of the smart rod obtained through a thermal test appeared to be negative with a low value of −0.190×10−6/°C. Consequently, the temperature dependence of the smart rod is mainly expressed by means of the thermooptic coefficient. Compared to the bare FBG sensor, the smart rod is easier to handle and can measure compressive strains, which make it a convenient sensor for various concrete structures.
ISSN:1687-725X
1687-7268
DOI:10.1155/2019/5345901