Loading…
Numerical investigations on multi-channel wideband chaotic signal generation by a multi-transverse mode vertical-cavity surface-emitting laser subject to chaotic optical injection
A multi-channel wideband chaotic signal generation scheme is proposed and numerically investigated based on a slave multi-transverse mode vertical-cavity surface-emitting laser (SL) subject to chaotic optical injection from a master multi-transverse mode vertical-cavity surface-emitting laser (ML) w...
Saved in:
Published in: | Applied optics (2004) 2019-10, Vol.58 (30), p.8160 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A multi-channel wideband chaotic signal generation scheme is proposed and numerically investigated based on a slave multi-transverse mode vertical-cavity surface-emitting laser (SL) subject to chaotic optical injection from a master multi-transverse mode vertical-cavity surface-emitting laser (ML) with optical feedback. Taking two low-order transverse modes, LP01 and LP11, as an example for numerical calculations, the simulated results show that under suitable optical feedback both the LP01 and LP11 modes (two-channel) of a ML can be driven into the chaotic states where their bandwidths are relatively narrow at a level about 8 GHz. Further injecting the two chaotic signals into a SL, for the case of the globally chaotic optical injection, the SL can output two-channel chaotic signals with wide bandwidths above 20 GHz under appropriate operation parameters. Moreover, the case of SL with mode-selective chaotic optical injection is also analyzed. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.58.008160 |