Loading…

Voyager 2 Constraints on Plasmoid‐based Transport at Uranus

A magnetosphere controls a planet's evolution by suppressing or enhancing atmospheric loss to space. In situ measurements of Uranus' magnetosphere from the Voyager 2 flyby in 1986 provide the only direct evidence of magnetospheric transport processes responsible for this atmospheric escape...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2019-10, Vol.46 (19), p.10710-10718
Main Authors: DiBraccio, Gina A., Gershman, Daniel J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A magnetosphere controls a planet's evolution by suppressing or enhancing atmospheric loss to space. In situ measurements of Uranus' magnetosphere from the Voyager 2 flyby in 1986 provide the only direct evidence of magnetospheric transport processes responsible for this atmospheric escape at Uranus. Analysis of high‐resolution Voyager 2 magnetic field data in Uranus' magnetotail reveals the presence of a loop‐like plasmoid filled with planetary plasma traveling away from the planet. This first plasmoid observation in an Ice Giant magnetosphere elucidates that (1) both internal and external forces play a role in Uranus' magnetospheric dynamics, (2) magnetic reconnection contributes to the circulation of plasma and magnetic flux at Uranus, and (3) plasmoids may be a dominant transport mechanism for mass loss through Uranus' magnetotail.
ISSN:0094-8276
1944-8007
DOI:10.1029/2019GL083909