Loading…

De Rham theorem for Whitney functions

Let M be a real analytic manifold, F a bounded complex of constructible sheaves. We show that the Whitney–de Rham complex associated to F is quasi-isomorphic to F .

Saved in:
Bibliographic Details
Published in:Mathematische Zeitschrift 2019-12, Vol.293 (3-4), p.1623-1632
Main Author: Prelli, Luca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-e773a8d9cf222a6563e363c854605f7ef6638037c60b9fc5a2de009a86d908f23
cites cdi_FETCH-LOGICAL-c319t-e773a8d9cf222a6563e363c854605f7ef6638037c60b9fc5a2de009a86d908f23
container_end_page 1632
container_issue 3-4
container_start_page 1623
container_title Mathematische Zeitschrift
container_volume 293
creator Prelli, Luca
description Let M be a real analytic manifold, F a bounded complex of constructible sheaves. We show that the Whitney–de Rham complex associated to F is quasi-isomorphic to F .
doi_str_mv 10.1007/s00209-019-02381-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2309912787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309912787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e773a8d9cf222a6563e363c854605f7ef6638037c60b9fc5a2de009a86d908f23</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoWEdfwFVBXEZPctpcljJeYUAQxWWImcTpYNsxaRd9e6MV3Lk4_Iv_cuAj5JTBBQOQlwmAg6bA8nFUjE57pGAVcsoUx31SZL-mtZLVITlKaQuQTVkV5Pzal08b25bDxvfRt2XoY_m6aYbOT2UYOzc0fZeOyUGwH8mf_OqCvNzePC_v6erx7mF5taIOmR6olxKtWmsXOOdW1AI9CnSqrgTUQfogBCpA6QS86eBqy9ceQFsl1hpU4LggZ_PuLvafo0-D2fZj7PJLwxG0ZlwqmVN8TrnYpxR9MLvYtDZOhoH5xmFmHCbjMD84zJRLOJdSDnfvPv5N_9P6AlCbYNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2309912787</pqid></control><display><type>article</type><title>De Rham theorem for Whitney functions</title><source>Springer Nature</source><creator>Prelli, Luca</creator><creatorcontrib>Prelli, Luca</creatorcontrib><description>Let M be a real analytic manifold, F a bounded complex of constructible sheaves. We show that the Whitney–de Rham complex associated to F is quasi-isomorphic to F .</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-019-02381-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics ; Sheaves</subject><ispartof>Mathematische Zeitschrift, 2019-12, Vol.293 (3-4), p.1623-1632</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e773a8d9cf222a6563e363c854605f7ef6638037c60b9fc5a2de009a86d908f23</citedby><cites>FETCH-LOGICAL-c319t-e773a8d9cf222a6563e363c854605f7ef6638037c60b9fc5a2de009a86d908f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Prelli, Luca</creatorcontrib><title>De Rham theorem for Whitney functions</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Let M be a real analytic manifold, F a bounded complex of constructible sheaves. We show that the Whitney–de Rham complex associated to F is quasi-isomorphic to F .</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sheaves</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoWEdfwFVBXEZPctpcljJeYUAQxWWImcTpYNsxaRd9e6MV3Lk4_Iv_cuAj5JTBBQOQlwmAg6bA8nFUjE57pGAVcsoUx31SZL-mtZLVITlKaQuQTVkV5Pzal08b25bDxvfRt2XoY_m6aYbOT2UYOzc0fZeOyUGwH8mf_OqCvNzePC_v6erx7mF5taIOmR6olxKtWmsXOOdW1AI9CnSqrgTUQfogBCpA6QS86eBqy9ceQFsl1hpU4LggZ_PuLvafo0-D2fZj7PJLwxG0ZlwqmVN8TrnYpxR9MLvYtDZOhoH5xmFmHCbjMD84zJRLOJdSDnfvPv5N_9P6AlCbYNM</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Prelli, Luca</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>De Rham theorem for Whitney functions</title><author>Prelli, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e773a8d9cf222a6563e363c854605f7ef6638037c60b9fc5a2de009a86d908f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sheaves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prelli, Luca</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prelli, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>De Rham theorem for Whitney functions</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>293</volume><issue>3-4</issue><spage>1623</spage><epage>1632</epage><pages>1623-1632</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Let M be a real analytic manifold, F a bounded complex of constructible sheaves. We show that the Whitney–de Rham complex associated to F is quasi-isomorphic to F .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-019-02381-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2019-12, Vol.293 (3-4), p.1623-1632
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2309912787
source Springer Nature
subjects Mathematics
Mathematics and Statistics
Sheaves
title De Rham theorem for Whitney functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=De%20Rham%20theorem%20for%20Whitney%20functions&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Prelli,%20Luca&rft.date=2019-12-01&rft.volume=293&rft.issue=3-4&rft.spage=1623&rft.epage=1632&rft.pages=1623-1632&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-019-02381-y&rft_dat=%3Cproquest_cross%3E2309912787%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-e773a8d9cf222a6563e363c854605f7ef6638037c60b9fc5a2de009a86d908f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2309912787&rft_id=info:pmid/&rfr_iscdi=true