Loading…

Mixed Mode I/III fatigue fracture characterization of Polyoxymethylene

•Mixed Mode I/III fatigue loading of POM-H ends up in a clearly visible life time reduction compared to pure Mode I loading.•Three equations of equivalent stress intensity factor were presented to determine the characterized Mixed Mode I/III loading.•For low Mode III/Mode I loading ratios wear abras...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fatigue 2020-01, Vol.130, p.105269, Article 105269
Main Authors: Gosch, Anja, Berer, Michael, Hutař, Pavel, Slávik, Ondrej, Vojtek, Tomáš, Arbeiter, Florian J., Pinter, Gerald
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-95d6f64def42ffbf4b66e1f2a9757dc7651dada2ec15b811b5abf8221f097a9e3
cites cdi_FETCH-LOGICAL-c343t-95d6f64def42ffbf4b66e1f2a9757dc7651dada2ec15b811b5abf8221f097a9e3
container_end_page
container_issue
container_start_page 105269
container_title International journal of fatigue
container_volume 130
creator Gosch, Anja
Berer, Michael
Hutař, Pavel
Slávik, Ondrej
Vojtek, Tomáš
Arbeiter, Florian J.
Pinter, Gerald
description •Mixed Mode I/III fatigue loading of POM-H ends up in a clearly visible life time reduction compared to pure Mode I loading.•Three equations of equivalent stress intensity factor were presented to determine the characterized Mixed Mode I/III loading.•For low Mode III/Mode I loading ratios wear abrasion and friction were detected on the fracture surfaces of the tested fatigue specimens.•Detailed fracture surface analysis displayed so called “factory roof formations” which are typical for Mixed Mode I/III fatigue loading. The crack growth behaviour of thermoplastic polymers is a relevant topic in current research. While a dominant portion of studies in fracture mechanics investigates Mode I loading situations, very little is done to better understand Mixed Mode crack growth, which can be equally important to accurate live time predictions of polymer parts. In this research, fatigue tests on cylindrically notched specimens were performed in Mixed Mode I/III loading and compared via the so called equivalent stress intensity factor. Under these loading conditions, a significant reduction of the cycles to fracture occurred compared to pure Mode I.
doi_str_mv 10.1016/j.ijfatigue.2019.105269
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2310281086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112319303731</els_id><sourcerecordid>2310281086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-95d6f64def42ffbf4b66e1f2a9757dc7651dada2ec15b811b5abf8221f097a9e3</originalsourceid><addsrcrecordid>eNqFkEFPwzAMhSMEEmPwG6jEuVucNm1znCYGlYbgAOcoTRyWamtG2qGVX0-nTlw52bLfe5Y_Qu6BzoBCNq9nrraqc58HnDEKYphylokLMoEiF3GScnZJJhRSFgOw5JrctG1NKRU05xOyenFHNNGLNxiV87Iso3NWZIPS3SFgpDfq1GJwP8PKN5G30Zvf9v7Y77Db9Fts8JZcWbVt8e5cp-Rj9fi-fI7Xr0_lcrGOdZImXSy4yWyWGrQps7ayaZVlCJYpkfPc6DzjYJRRDDXwqgCouKpswRhYKnIlMJmShzF3H_zXAdtO1v4QmuGkZAlQVgAtskGVjyodfNsGtHIf3E6FXgKVJ2iyln_Q5AmaHKENzsXoxOGJb4dBttpho9G4gLqTxrt_M34BC1V6Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310281086</pqid></control><display><type>article</type><title>Mixed Mode I/III fatigue fracture characterization of Polyoxymethylene</title><source>ScienceDirect Journals</source><creator>Gosch, Anja ; Berer, Michael ; Hutař, Pavel ; Slávik, Ondrej ; Vojtek, Tomáš ; Arbeiter, Florian J. ; Pinter, Gerald</creator><creatorcontrib>Gosch, Anja ; Berer, Michael ; Hutař, Pavel ; Slávik, Ondrej ; Vojtek, Tomáš ; Arbeiter, Florian J. ; Pinter, Gerald</creatorcontrib><description>•Mixed Mode I/III fatigue loading of POM-H ends up in a clearly visible life time reduction compared to pure Mode I loading.•Three equations of equivalent stress intensity factor were presented to determine the characterized Mixed Mode I/III loading.•For low Mode III/Mode I loading ratios wear abrasion and friction were detected on the fracture surfaces of the tested fatigue specimens.•Detailed fracture surface analysis displayed so called “factory roof formations” which are typical for Mixed Mode I/III fatigue loading. The crack growth behaviour of thermoplastic polymers is a relevant topic in current research. While a dominant portion of studies in fracture mechanics investigates Mode I loading situations, very little is done to better understand Mixed Mode crack growth, which can be equally important to accurate live time predictions of polymer parts. In this research, fatigue tests on cylindrically notched specimens were performed in Mixed Mode I/III loading and compared via the so called equivalent stress intensity factor. Under these loading conditions, a significant reduction of the cycles to fracture occurred compared to pure Mode I.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2019.105269</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Crack propagation ; Equivalent stress intensity factor ; Fatigue crack growth ; Fatigue failure ; Fatigue tests ; Fracture mechanics ; Materials fatigue ; Mixed Mode loading ; Polymers ; Stress intensity factors</subject><ispartof>International journal of fatigue, 2020-01, Vol.130, p.105269, Article 105269</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-95d6f64def42ffbf4b66e1f2a9757dc7651dada2ec15b811b5abf8221f097a9e3</citedby><cites>FETCH-LOGICAL-c343t-95d6f64def42ffbf4b66e1f2a9757dc7651dada2ec15b811b5abf8221f097a9e3</cites><orcidid>0000-0003-4638-0849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gosch, Anja</creatorcontrib><creatorcontrib>Berer, Michael</creatorcontrib><creatorcontrib>Hutař, Pavel</creatorcontrib><creatorcontrib>Slávik, Ondrej</creatorcontrib><creatorcontrib>Vojtek, Tomáš</creatorcontrib><creatorcontrib>Arbeiter, Florian J.</creatorcontrib><creatorcontrib>Pinter, Gerald</creatorcontrib><title>Mixed Mode I/III fatigue fracture characterization of Polyoxymethylene</title><title>International journal of fatigue</title><description>•Mixed Mode I/III fatigue loading of POM-H ends up in a clearly visible life time reduction compared to pure Mode I loading.•Three equations of equivalent stress intensity factor were presented to determine the characterized Mixed Mode I/III loading.•For low Mode III/Mode I loading ratios wear abrasion and friction were detected on the fracture surfaces of the tested fatigue specimens.•Detailed fracture surface analysis displayed so called “factory roof formations” which are typical for Mixed Mode I/III fatigue loading. The crack growth behaviour of thermoplastic polymers is a relevant topic in current research. While a dominant portion of studies in fracture mechanics investigates Mode I loading situations, very little is done to better understand Mixed Mode crack growth, which can be equally important to accurate live time predictions of polymer parts. In this research, fatigue tests on cylindrically notched specimens were performed in Mixed Mode I/III loading and compared via the so called equivalent stress intensity factor. Under these loading conditions, a significant reduction of the cycles to fracture occurred compared to pure Mode I.</description><subject>Crack propagation</subject><subject>Equivalent stress intensity factor</subject><subject>Fatigue crack growth</subject><subject>Fatigue failure</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Materials fatigue</subject><subject>Mixed Mode loading</subject><subject>Polymers</subject><subject>Stress intensity factors</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwzAMhSMEEmPwG6jEuVucNm1znCYGlYbgAOcoTRyWamtG2qGVX0-nTlw52bLfe5Y_Qu6BzoBCNq9nrraqc58HnDEKYphylokLMoEiF3GScnZJJhRSFgOw5JrctG1NKRU05xOyenFHNNGLNxiV87Iso3NWZIPS3SFgpDfq1GJwP8PKN5G30Zvf9v7Y77Db9Fts8JZcWbVt8e5cp-Rj9fi-fI7Xr0_lcrGOdZImXSy4yWyWGrQps7ayaZVlCJYpkfPc6DzjYJRRDDXwqgCouKpswRhYKnIlMJmShzF3H_zXAdtO1v4QmuGkZAlQVgAtskGVjyodfNsGtHIf3E6FXgKVJ2iyln_Q5AmaHKENzsXoxOGJb4dBttpho9G4gLqTxrt_M34BC1V6Sg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Gosch, Anja</creator><creator>Berer, Michael</creator><creator>Hutař, Pavel</creator><creator>Slávik, Ondrej</creator><creator>Vojtek, Tomáš</creator><creator>Arbeiter, Florian J.</creator><creator>Pinter, Gerald</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4638-0849</orcidid></search><sort><creationdate>202001</creationdate><title>Mixed Mode I/III fatigue fracture characterization of Polyoxymethylene</title><author>Gosch, Anja ; Berer, Michael ; Hutař, Pavel ; Slávik, Ondrej ; Vojtek, Tomáš ; Arbeiter, Florian J. ; Pinter, Gerald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-95d6f64def42ffbf4b66e1f2a9757dc7651dada2ec15b811b5abf8221f097a9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Crack propagation</topic><topic>Equivalent stress intensity factor</topic><topic>Fatigue crack growth</topic><topic>Fatigue failure</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Materials fatigue</topic><topic>Mixed Mode loading</topic><topic>Polymers</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gosch, Anja</creatorcontrib><creatorcontrib>Berer, Michael</creatorcontrib><creatorcontrib>Hutař, Pavel</creatorcontrib><creatorcontrib>Slávik, Ondrej</creatorcontrib><creatorcontrib>Vojtek, Tomáš</creatorcontrib><creatorcontrib>Arbeiter, Florian J.</creatorcontrib><creatorcontrib>Pinter, Gerald</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gosch, Anja</au><au>Berer, Michael</au><au>Hutař, Pavel</au><au>Slávik, Ondrej</au><au>Vojtek, Tomáš</au><au>Arbeiter, Florian J.</au><au>Pinter, Gerald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed Mode I/III fatigue fracture characterization of Polyoxymethylene</atitle><jtitle>International journal of fatigue</jtitle><date>2020-01</date><risdate>2020</risdate><volume>130</volume><spage>105269</spage><pages>105269-</pages><artnum>105269</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•Mixed Mode I/III fatigue loading of POM-H ends up in a clearly visible life time reduction compared to pure Mode I loading.•Three equations of equivalent stress intensity factor were presented to determine the characterized Mixed Mode I/III loading.•For low Mode III/Mode I loading ratios wear abrasion and friction were detected on the fracture surfaces of the tested fatigue specimens.•Detailed fracture surface analysis displayed so called “factory roof formations” which are typical for Mixed Mode I/III fatigue loading. The crack growth behaviour of thermoplastic polymers is a relevant topic in current research. While a dominant portion of studies in fracture mechanics investigates Mode I loading situations, very little is done to better understand Mixed Mode crack growth, which can be equally important to accurate live time predictions of polymer parts. In this research, fatigue tests on cylindrically notched specimens were performed in Mixed Mode I/III loading and compared via the so called equivalent stress intensity factor. Under these loading conditions, a significant reduction of the cycles to fracture occurred compared to pure Mode I.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2019.105269</doi><orcidid>https://orcid.org/0000-0003-4638-0849</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2020-01, Vol.130, p.105269, Article 105269
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2310281086
source ScienceDirect Journals
subjects Crack propagation
Equivalent stress intensity factor
Fatigue crack growth
Fatigue failure
Fatigue tests
Fracture mechanics
Materials fatigue
Mixed Mode loading
Polymers
Stress intensity factors
title Mixed Mode I/III fatigue fracture characterization of Polyoxymethylene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20Mode%20I/III%20fatigue%20fracture%20characterization%20of%20Polyoxymethylene&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Gosch,%20Anja&rft.date=2020-01&rft.volume=130&rft.spage=105269&rft.pages=105269-&rft.artnum=105269&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2019.105269&rft_dat=%3Cproquest_cross%3E2310281086%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-95d6f64def42ffbf4b66e1f2a9757dc7651dada2ec15b811b5abf8221f097a9e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2310281086&rft_id=info:pmid/&rfr_iscdi=true