Loading…

New Galerkin-vector theory and efficient numerical method for analyzing steady-state heat conduction in inhomogeneous bodies subjected to a surface heat flux

•We report a new method for solving inhomogeneous heat-conduction problems.•We derived the Galerkin-vector forms of the disturbed temperature and heat flux.•The eigentemperature gradient is tackled with numerical EIM.•We explore the influences of inhomogeneity shape, location, and distributions. Thi...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2019-10, Vol.161, p.113838, Article 113838
Main Authors: Shi, Xiujiang, Wang, Qian, Wang, Liqin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-8c6af0ab73c080b206c27aeb9e2fcfb9b19b81e8f3368fec592aef799f36d7ff3
cites cdi_FETCH-LOGICAL-c412t-8c6af0ab73c080b206c27aeb9e2fcfb9b19b81e8f3368fec592aef799f36d7ff3
container_end_page
container_issue
container_start_page 113838
container_title Applied thermal engineering
container_volume 161
creator Shi, Xiujiang
Wang, Qian
Wang, Liqin
description •We report a new method for solving inhomogeneous heat-conduction problems.•We derived the Galerkin-vector forms of the disturbed temperature and heat flux.•The eigentemperature gradient is tackled with numerical EIM.•We explore the influences of inhomogeneity shape, location, and distributions. This paper reports a new semi-analytical model, together with core analytical solutions, for solving steady-state heat-conduction problems involving materials of a semi-infinite matrix embedded with arbitrarily distributed inhomogeneities, and a novel fast computing algorithm for model construction. The thermal field is analyzed as the summation of the solution to the homogeneous matrix and the variations caused by the inhomogeneities. The former is obtained through the route of discrete convolution and FFT/Influence coefficients/Green’s function, and the surface heat flux via the conjugate gradient method (CGM). The eigentemperature gradient of the latter is tackled with the numerical equivalent inclusion method (EIM) based on the new analytical formulas for the disturbed temperature and heat flux from the Galerkin vectors. The influences of inhomogeneity shape, location, and heat-conduction properties are studied, and the thermal fields affected by multi-inhomogeneities in a layered form and with a regular or a random distribution are investigated.
doi_str_mv 10.1016/j.applthermaleng.2019.113838
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2310283128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431118343916</els_id><sourcerecordid>2310283128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-8c6af0ab73c080b206c27aeb9e2fcfb9b19b81e8f3368fec592aef799f36d7ff3</originalsourceid><addsrcrecordid>eNqNUctqHDEQHIwD8SP_IEius9Zjd0YDuQQTOwZjX-yz6JFauxrPSBtJY2f9L_lXa1lffDM0dDdUVdNVVfWD0QWjrLkYFrDdjnmDcYIR_XrBKesWjAkp5FF1wmQr6lVDm-Myi1VXLwVjX6vTlAZKGZft8qT6f4cv5Lqw45Pz9TPqHCIpiiHuCHhD0FqnHfpM_DxhdBpGMmHeBENsQYKHcffq_JqkjGB2dcqQkWwQMtHBm1lnFzxx-9qEKazRY5gT6YNxmEia-6GcRENyIFDWaEG_0-04_zuvvlgYE35772fV49Xvh8s_9e399c3lr9taLxnPtdQNWAp9KzSVtOe00bwF7DvkVtu-61nXS4bSCtFIi3rVcUDbdp0VjWmtFWfV94PuNoa_M6ashjDH8ltSXDDKpSh2FdTPA0rHkFJEq7bRTRB3ilG1D0QN6mMgah-IOgRS6FcHOpZPnh1GlfbOajQuFhOUCe5zQm_WvKI5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310283128</pqid></control><display><type>article</type><title>New Galerkin-vector theory and efficient numerical method for analyzing steady-state heat conduction in inhomogeneous bodies subjected to a surface heat flux</title><source>ScienceDirect Freedom Collection</source><creator>Shi, Xiujiang ; Wang, Qian ; Wang, Liqin</creator><creatorcontrib>Shi, Xiujiang ; Wang, Qian ; Wang, Liqin</creatorcontrib><description>•We report a new method for solving inhomogeneous heat-conduction problems.•We derived the Galerkin-vector forms of the disturbed temperature and heat flux.•The eigentemperature gradient is tackled with numerical EIM.•We explore the influences of inhomogeneity shape, location, and distributions. This paper reports a new semi-analytical model, together with core analytical solutions, for solving steady-state heat-conduction problems involving materials of a semi-infinite matrix embedded with arbitrarily distributed inhomogeneities, and a novel fast computing algorithm for model construction. The thermal field is analyzed as the summation of the solution to the homogeneous matrix and the variations caused by the inhomogeneities. The former is obtained through the route of discrete convolution and FFT/Influence coefficients/Green’s function, and the surface heat flux via the conjugate gradient method (CGM). The eigentemperature gradient of the latter is tackled with the numerical equivalent inclusion method (EIM) based on the new analytical formulas for the disturbed temperature and heat flux from the Galerkin vectors. The influences of inhomogeneity shape, location, and heat-conduction properties are studied, and the thermal fields affected by multi-inhomogeneities in a layered form and with a regular or a random distribution are investigated.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2019.113838</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Conduction heating ; Conductive heat transfer ; Conjugate gradient method ; Convolution ; Exact solutions ; Galerkin method ; Galerkin vector approach ; Green's functions ; Heat conduction, inhomogeneity ; Heat conductivity ; Heat flux ; Heat transfer ; Inhomogeneity ; Mathematical models ; Numerical equivalent inclusion method ; Numerical methods ; Steady state ; Temperature</subject><ispartof>Applied thermal engineering, 2019-10, Vol.161, p.113838, Article 113838</ispartof><rights>2019</rights><rights>Copyright Elsevier BV Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-8c6af0ab73c080b206c27aeb9e2fcfb9b19b81e8f3368fec592aef799f36d7ff3</citedby><cites>FETCH-LOGICAL-c412t-8c6af0ab73c080b206c27aeb9e2fcfb9b19b81e8f3368fec592aef799f36d7ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shi, Xiujiang</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Wang, Liqin</creatorcontrib><title>New Galerkin-vector theory and efficient numerical method for analyzing steady-state heat conduction in inhomogeneous bodies subjected to a surface heat flux</title><title>Applied thermal engineering</title><description>•We report a new method for solving inhomogeneous heat-conduction problems.•We derived the Galerkin-vector forms of the disturbed temperature and heat flux.•The eigentemperature gradient is tackled with numerical EIM.•We explore the influences of inhomogeneity shape, location, and distributions. This paper reports a new semi-analytical model, together with core analytical solutions, for solving steady-state heat-conduction problems involving materials of a semi-infinite matrix embedded with arbitrarily distributed inhomogeneities, and a novel fast computing algorithm for model construction. The thermal field is analyzed as the summation of the solution to the homogeneous matrix and the variations caused by the inhomogeneities. The former is obtained through the route of discrete convolution and FFT/Influence coefficients/Green’s function, and the surface heat flux via the conjugate gradient method (CGM). The eigentemperature gradient of the latter is tackled with the numerical equivalent inclusion method (EIM) based on the new analytical formulas for the disturbed temperature and heat flux from the Galerkin vectors. The influences of inhomogeneity shape, location, and heat-conduction properties are studied, and the thermal fields affected by multi-inhomogeneities in a layered form and with a regular or a random distribution are investigated.</description><subject>Algorithms</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Conjugate gradient method</subject><subject>Convolution</subject><subject>Exact solutions</subject><subject>Galerkin method</subject><subject>Galerkin vector approach</subject><subject>Green's functions</subject><subject>Heat conduction, inhomogeneity</subject><subject>Heat conductivity</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Inhomogeneity</subject><subject>Mathematical models</subject><subject>Numerical equivalent inclusion method</subject><subject>Numerical methods</subject><subject>Steady state</subject><subject>Temperature</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUctqHDEQHIwD8SP_IEius9Zjd0YDuQQTOwZjX-yz6JFauxrPSBtJY2f9L_lXa1lffDM0dDdUVdNVVfWD0QWjrLkYFrDdjnmDcYIR_XrBKesWjAkp5FF1wmQr6lVDm-Myi1VXLwVjX6vTlAZKGZft8qT6f4cv5Lqw45Pz9TPqHCIpiiHuCHhD0FqnHfpM_DxhdBpGMmHeBENsQYKHcffq_JqkjGB2dcqQkWwQMtHBm1lnFzxx-9qEKazRY5gT6YNxmEia-6GcRENyIFDWaEG_0-04_zuvvlgYE35772fV49Xvh8s_9e399c3lr9taLxnPtdQNWAp9KzSVtOe00bwF7DvkVtu-61nXS4bSCtFIi3rVcUDbdp0VjWmtFWfV94PuNoa_M6ashjDH8ltSXDDKpSh2FdTPA0rHkFJEq7bRTRB3ilG1D0QN6mMgah-IOgRS6FcHOpZPnh1GlfbOajQuFhOUCe5zQm_WvKI5</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Shi, Xiujiang</creator><creator>Wang, Qian</creator><creator>Wang, Liqin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201910</creationdate><title>New Galerkin-vector theory and efficient numerical method for analyzing steady-state heat conduction in inhomogeneous bodies subjected to a surface heat flux</title><author>Shi, Xiujiang ; Wang, Qian ; Wang, Liqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-8c6af0ab73c080b206c27aeb9e2fcfb9b19b81e8f3368fec592aef799f36d7ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Conjugate gradient method</topic><topic>Convolution</topic><topic>Exact solutions</topic><topic>Galerkin method</topic><topic>Galerkin vector approach</topic><topic>Green's functions</topic><topic>Heat conduction, inhomogeneity</topic><topic>Heat conductivity</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Inhomogeneity</topic><topic>Mathematical models</topic><topic>Numerical equivalent inclusion method</topic><topic>Numerical methods</topic><topic>Steady state</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Xiujiang</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Wang, Liqin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Xiujiang</au><au>Wang, Qian</au><au>Wang, Liqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Galerkin-vector theory and efficient numerical method for analyzing steady-state heat conduction in inhomogeneous bodies subjected to a surface heat flux</atitle><jtitle>Applied thermal engineering</jtitle><date>2019-10</date><risdate>2019</risdate><volume>161</volume><spage>113838</spage><pages>113838-</pages><artnum>113838</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•We report a new method for solving inhomogeneous heat-conduction problems.•We derived the Galerkin-vector forms of the disturbed temperature and heat flux.•The eigentemperature gradient is tackled with numerical EIM.•We explore the influences of inhomogeneity shape, location, and distributions. This paper reports a new semi-analytical model, together with core analytical solutions, for solving steady-state heat-conduction problems involving materials of a semi-infinite matrix embedded with arbitrarily distributed inhomogeneities, and a novel fast computing algorithm for model construction. The thermal field is analyzed as the summation of the solution to the homogeneous matrix and the variations caused by the inhomogeneities. The former is obtained through the route of discrete convolution and FFT/Influence coefficients/Green’s function, and the surface heat flux via the conjugate gradient method (CGM). The eigentemperature gradient of the latter is tackled with the numerical equivalent inclusion method (EIM) based on the new analytical formulas for the disturbed temperature and heat flux from the Galerkin vectors. The influences of inhomogeneity shape, location, and heat-conduction properties are studied, and the thermal fields affected by multi-inhomogeneities in a layered form and with a regular or a random distribution are investigated.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2019.113838</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2019-10, Vol.161, p.113838, Article 113838
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2310283128
source ScienceDirect Freedom Collection
subjects Algorithms
Conduction heating
Conductive heat transfer
Conjugate gradient method
Convolution
Exact solutions
Galerkin method
Galerkin vector approach
Green's functions
Heat conduction, inhomogeneity
Heat conductivity
Heat flux
Heat transfer
Inhomogeneity
Mathematical models
Numerical equivalent inclusion method
Numerical methods
Steady state
Temperature
title New Galerkin-vector theory and efficient numerical method for analyzing steady-state heat conduction in inhomogeneous bodies subjected to a surface heat flux
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T19%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Galerkin-vector%20theory%20and%20efficient%20numerical%20method%20for%20analyzing%20steady-state%20heat%20conduction%20in%20inhomogeneous%20bodies%20subjected%20to%20a%20surface%20heat%20flux&rft.jtitle=Applied%20thermal%20engineering&rft.au=Shi,%20Xiujiang&rft.date=2019-10&rft.volume=161&rft.spage=113838&rft.pages=113838-&rft.artnum=113838&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2019.113838&rft_dat=%3Cproquest_cross%3E2310283128%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-8c6af0ab73c080b206c27aeb9e2fcfb9b19b81e8f3368fec592aef799f36d7ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2310283128&rft_id=info:pmid/&rfr_iscdi=true