Loading…
Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1−yFeyO3−δ
La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ (x = 0, 0.2, y = 0.1, 0.2, 0.3, 0.4) were prepared by the glycine–nitrate process. The electrochemical property and oxygen diffusion behavior of La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ were investigated. The electrochemical impedance spectroscopy analysis sugges...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2019-11, Vol.30 (22), p.20050-20057 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573 |
container_end_page | 20057 |
container_issue | 22 |
container_start_page | 20050 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 30 |
creator | Zhang, Huanhuan Zhao, Lei Jian, Binghua jin, Jiang Zhang, Hua |
description | La
0.6−x
Sr
0.4
Ba
x
Co
1−y
Fe
y
O
3−δ
(x = 0, 0.2, y = 0.1, 0.2, 0.3, 0.4) were prepared by the glycine–nitrate process. The electrochemical property and oxygen diffusion behavior of La
0.6−x
Sr
0.4
Ba
x
Co
1−y
Fe
y
O
3−δ
were investigated. The electrochemical impedance spectroscopy analysis suggests that doping with an appropriate amount of iron and barium improves the catalytic performance. La
0.4
Sr
0.4
Ba
0.2
Co
0.9
Fe
0.1
O
3−δ
calcined at 950 °C exhibits the minimum polarization resistance of 0.0349 Ω cm
2
at 750 °C. The doping of Fe improves the sintering performance. The crystalline size of La
0.6−x
Sr
0.4
Ba
x
Co
1−y
Fe
y
O
3−δ
becomes smaller with the doping amount of Ba, which increase the number of active sites. The doping of Ba decreases the oxygen vacancy formation energy and increases the oxygen vacancy concentration, which accelerates the oxygen diffusion. Further, the single cell performance for La
0.4
Sr
0.4
Ba
0.2
Co
0.9
Fe
0.1
O
3−δ
as cathode shows the maximum power density of 539.49 W cm
−2
at 750 °C. |
doi_str_mv | 10.1007/s10854-019-02376-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2310429686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310429686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWLv4P_ESKgpIlbrgR-ysiWOXVG1S7FZqbsCas3AODsFJMASJHauZkd57o_chdErJiBKSn0dKCikwoRoTxnOF9R4aUJlzLAr2tI8GRMscC8nYITqKcUEIUYIXA_Q423Vz12RV7f021m2TQVNlbunsJrT22a1qC8ts7YJvwwoa67LWZ1MgI_X5-ra7C2QkLmE3bmk6u4nrZjwtH-_H6MDDMrqT3zlED5Or-_ENns6ub8cXU2w51RusnM9Bay5ECcJJ6cBRCdxSVYqyYl55ab3NnRRgS64EEO4r8CUDAGJTvSE663PXoX3Zurgxi3YbmvTSME6JYFoVKqlYr7KhjTE4b9ahXkHoDCXmm5_p-ZnEz_zwMzqZeG-KSdzMXfiL_sf1BeTcdzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310429686</pqid></control><display><type>article</type><title>Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1−yFeyO3−δ</title><source>Springer Link</source><creator>Zhang, Huanhuan ; Zhao, Lei ; Jian, Binghua ; jin, Jiang ; Zhang, Hua</creator><creatorcontrib>Zhang, Huanhuan ; Zhao, Lei ; Jian, Binghua ; jin, Jiang ; Zhang, Hua</creatorcontrib><description>La
0.6−x
Sr
0.4
Ba
x
Co
1−y
Fe
y
O
3−δ
(x = 0, 0.2, y = 0.1, 0.2, 0.3, 0.4) were prepared by the glycine–nitrate process. The electrochemical property and oxygen diffusion behavior of La
0.6−x
Sr
0.4
Ba
x
Co
1−y
Fe
y
O
3−δ
were investigated. The electrochemical impedance spectroscopy analysis suggests that doping with an appropriate amount of iron and barium improves the catalytic performance. La
0.4
Sr
0.4
Ba
0.2
Co
0.9
Fe
0.1
O
3−δ
calcined at 950 °C exhibits the minimum polarization resistance of 0.0349 Ω cm
2
at 750 °C. The doping of Fe improves the sintering performance. The crystalline size of La
0.6−x
Sr
0.4
Ba
x
Co
1−y
Fe
y
O
3−δ
becomes smaller with the doping amount of Ba, which increase the number of active sites. The doping of Ba decreases the oxygen vacancy formation energy and increases the oxygen vacancy concentration, which accelerates the oxygen diffusion. Further, the single cell performance for La
0.4
Sr
0.4
Ba
0.2
Co
0.9
Fe
0.1
O
3−δ
as cathode shows the maximum power density of 539.49 W cm
−2
at 750 °C.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-02376-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Barium ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Diffusion ; Doping ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrode polarization ; Electrodes ; Electrolytes ; Free energy ; Glycine ; Heat of formation ; Iron ; Materials Science ; Maximum power density ; Nitrates ; Optical and Electronic Materials ; Oxygen ; Vacancies</subject><ispartof>Journal of materials science. Materials in electronics, 2019-11, Vol.30 (22), p.20050-20057</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573</citedby><cites>FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573</cites><orcidid>0000-0001-8514-0958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zhang, Huanhuan</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Jian, Binghua</creatorcontrib><creatorcontrib>jin, Jiang</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><title>Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1−yFeyO3−δ</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>La
0.6−x
Sr
0.4
Ba
x
Co
1−y
Fe
y
O
3−δ
(x = 0, 0.2, y = 0.1, 0.2, 0.3, 0.4) were prepared by the glycine–nitrate process. The electrochemical property and oxygen diffusion behavior of La
0.6−x
Sr
0.4
Ba
x
Co
1−y
Fe
y
O
3−δ
were investigated. The electrochemical impedance spectroscopy analysis suggests that doping with an appropriate amount of iron and barium improves the catalytic performance. La
0.4
Sr
0.4
Ba
0.2
Co
0.9
Fe
0.1
O
3−δ
calcined at 950 °C exhibits the minimum polarization resistance of 0.0349 Ω cm
2
at 750 °C. The doping of Fe improves the sintering performance. The crystalline size of La
0.6−x
Sr
0.4
Ba
x
Co
1−y
Fe
y
O
3−δ
becomes smaller with the doping amount of Ba, which increase the number of active sites. The doping of Ba decreases the oxygen vacancy formation energy and increases the oxygen vacancy concentration, which accelerates the oxygen diffusion. Further, the single cell performance for La
0.4
Sr
0.4
Ba
0.2
Co
0.9
Fe
0.1
O
3−δ
as cathode shows the maximum power density of 539.49 W cm
−2
at 750 °C.</description><subject>Barium</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Diffusion</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Free energy</subject><subject>Glycine</subject><subject>Heat of formation</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Maximum power density</subject><subject>Nitrates</subject><subject>Optical and Electronic Materials</subject><subject>Oxygen</subject><subject>Vacancies</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWLv4P_ESKgpIlbrgR-ysiWOXVG1S7FZqbsCas3AODsFJMASJHauZkd57o_chdErJiBKSn0dKCikwoRoTxnOF9R4aUJlzLAr2tI8GRMscC8nYITqKcUEIUYIXA_Q423Vz12RV7f021m2TQVNlbunsJrT22a1qC8ts7YJvwwoa67LWZ1MgI_X5-ra7C2QkLmE3bmk6u4nrZjwtH-_H6MDDMrqT3zlED5Or-_ENns6ub8cXU2w51RusnM9Bay5ECcJJ6cBRCdxSVYqyYl55ab3NnRRgS64EEO4r8CUDAGJTvSE663PXoX3Zurgxi3YbmvTSME6JYFoVKqlYr7KhjTE4b9ahXkHoDCXmm5_p-ZnEz_zwMzqZeG-KSdzMXfiL_sf1BeTcdzk</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhang, Huanhuan</creator><creator>Zhao, Lei</creator><creator>Jian, Binghua</creator><creator>jin, Jiang</creator><creator>Zhang, Hua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8514-0958</orcidid></search><sort><creationdate>20191101</creationdate><title>Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1−yFeyO3−δ</title><author>Zhang, Huanhuan ; Zhao, Lei ; Jian, Binghua ; jin, Jiang ; Zhang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Barium</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Diffusion</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Free energy</topic><topic>Glycine</topic><topic>Heat of formation</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Maximum power density</topic><topic>Nitrates</topic><topic>Optical and Electronic Materials</topic><topic>Oxygen</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huanhuan</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Jian, Binghua</creatorcontrib><creatorcontrib>jin, Jiang</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Huanhuan</au><au>Zhao, Lei</au><au>Jian, Binghua</au><au>jin, Jiang</au><au>Zhang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1−yFeyO3−δ</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>30</volume><issue>22</issue><spage>20050</spage><epage>20057</epage><pages>20050-20057</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>La
0.6−x
Sr
0.4
Ba
x
Co
1−y
Fe
y
O
3−δ
(x = 0, 0.2, y = 0.1, 0.2, 0.3, 0.4) were prepared by the glycine–nitrate process. The electrochemical property and oxygen diffusion behavior of La
0.6−x
Sr
0.4
Ba
x
Co
1−y
Fe
y
O
3−δ
were investigated. The electrochemical impedance spectroscopy analysis suggests that doping with an appropriate amount of iron and barium improves the catalytic performance. La
0.4
Sr
0.4
Ba
0.2
Co
0.9
Fe
0.1
O
3−δ
calcined at 950 °C exhibits the minimum polarization resistance of 0.0349 Ω cm
2
at 750 °C. The doping of Fe improves the sintering performance. The crystalline size of La
0.6−x
Sr
0.4
Ba
x
Co
1−y
Fe
y
O
3−δ
becomes smaller with the doping amount of Ba, which increase the number of active sites. The doping of Ba decreases the oxygen vacancy formation energy and increases the oxygen vacancy concentration, which accelerates the oxygen diffusion. Further, the single cell performance for La
0.4
Sr
0.4
Ba
0.2
Co
0.9
Fe
0.1
O
3−δ
as cathode shows the maximum power density of 539.49 W cm
−2
at 750 °C.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-02376-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8514-0958</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2019-11, Vol.30 (22), p.20050-20057 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2310429686 |
source | Springer Link |
subjects | Barium Characterization and Evaluation of Materials Chemistry and Materials Science Crystal structure Diffusion Doping Electrochemical analysis Electrochemical impedance spectroscopy Electrode polarization Electrodes Electrolytes Free energy Glycine Heat of formation Iron Materials Science Maximum power density Nitrates Optical and Electronic Materials Oxygen Vacancies |
title | Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1−yFeyO3−δ |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20diffusion%20and%20electrochemical%20performance%20of%20La0.6%E2%88%92xSr0.4BaxCo1%E2%88%92yFeyO3%E2%88%92%CE%B4&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhang,%20Huanhuan&rft.date=2019-11-01&rft.volume=30&rft.issue=22&rft.spage=20050&rft.epage=20057&rft.pages=20050-20057&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-02376-9&rft_dat=%3Cproquest_cross%3E2310429686%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2310429686&rft_id=info:pmid/&rfr_iscdi=true |