Loading…

Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1−yFeyO3−δ

La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ (x = 0, 0.2, y = 0.1, 0.2, 0.3, 0.4) were prepared by the glycine–nitrate process. The electrochemical property and oxygen diffusion behavior of La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ were investigated. The electrochemical impedance spectroscopy analysis sugges...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2019-11, Vol.30 (22), p.20050-20057
Main Authors: Zhang, Huanhuan, Zhao, Lei, Jian, Binghua, jin, Jiang, Zhang, Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573
cites cdi_FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573
container_end_page 20057
container_issue 22
container_start_page 20050
container_title Journal of materials science. Materials in electronics
container_volume 30
creator Zhang, Huanhuan
Zhao, Lei
Jian, Binghua
jin, Jiang
Zhang, Hua
description La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ (x = 0, 0.2, y = 0.1, 0.2, 0.3, 0.4) were prepared by the glycine–nitrate process. The electrochemical property and oxygen diffusion behavior of La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ were investigated. The electrochemical impedance spectroscopy analysis suggests that doping with an appropriate amount of iron and barium improves the catalytic performance. La 0.4 Sr 0.4 Ba 0.2 Co 0.9 Fe 0.1 O 3−δ calcined at 950 °C exhibits the minimum polarization resistance of 0.0349 Ω cm 2 at 750 °C. The doping of Fe improves the sintering performance. The crystalline size of La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ becomes smaller with the doping amount of Ba, which increase the number of active sites. The doping of Ba decreases the oxygen vacancy formation energy and increases the oxygen vacancy concentration, which accelerates the oxygen diffusion. Further, the single cell performance for La 0.4 Sr 0.4 Ba 0.2 Co 0.9 Fe 0.1 O 3−δ as cathode shows the maximum power density of 539.49 W cm −2 at 750 °C.
doi_str_mv 10.1007/s10854-019-02376-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2310429686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2310429686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaRWLv4P_ESKgpIlbrgR-ysiWOXVG1S7FZqbsCas3AODsFJMASJHauZkd57o_chdErJiBKSn0dKCikwoRoTxnOF9R4aUJlzLAr2tI8GRMscC8nYITqKcUEIUYIXA_Q423Vz12RV7f021m2TQVNlbunsJrT22a1qC8ts7YJvwwoa67LWZ1MgI_X5-ra7C2QkLmE3bmk6u4nrZjwtH-_H6MDDMrqT3zlED5Or-_ENns6ub8cXU2w51RusnM9Bay5ECcJJ6cBRCdxSVYqyYl55ab3NnRRgS64EEO4r8CUDAGJTvSE663PXoX3Zurgxi3YbmvTSME6JYFoVKqlYr7KhjTE4b9ahXkHoDCXmm5_p-ZnEz_zwMzqZeG-KSdzMXfiL_sf1BeTcdzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2310429686</pqid></control><display><type>article</type><title>Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1−yFeyO3−δ</title><source>Springer Link</source><creator>Zhang, Huanhuan ; Zhao, Lei ; Jian, Binghua ; jin, Jiang ; Zhang, Hua</creator><creatorcontrib>Zhang, Huanhuan ; Zhao, Lei ; Jian, Binghua ; jin, Jiang ; Zhang, Hua</creatorcontrib><description>La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ (x = 0, 0.2, y = 0.1, 0.2, 0.3, 0.4) were prepared by the glycine–nitrate process. The electrochemical property and oxygen diffusion behavior of La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ were investigated. The electrochemical impedance spectroscopy analysis suggests that doping with an appropriate amount of iron and barium improves the catalytic performance. La 0.4 Sr 0.4 Ba 0.2 Co 0.9 Fe 0.1 O 3−δ calcined at 950 °C exhibits the minimum polarization resistance of 0.0349 Ω cm 2 at 750 °C. The doping of Fe improves the sintering performance. The crystalline size of La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ becomes smaller with the doping amount of Ba, which increase the number of active sites. The doping of Ba decreases the oxygen vacancy formation energy and increases the oxygen vacancy concentration, which accelerates the oxygen diffusion. Further, the single cell performance for La 0.4 Sr 0.4 Ba 0.2 Co 0.9 Fe 0.1 O 3−δ as cathode shows the maximum power density of 539.49 W cm −2 at 750 °C.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-02376-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Barium ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystal structure ; Diffusion ; Doping ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrode polarization ; Electrodes ; Electrolytes ; Free energy ; Glycine ; Heat of formation ; Iron ; Materials Science ; Maximum power density ; Nitrates ; Optical and Electronic Materials ; Oxygen ; Vacancies</subject><ispartof>Journal of materials science. Materials in electronics, 2019-11, Vol.30 (22), p.20050-20057</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573</citedby><cites>FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573</cites><orcidid>0000-0001-8514-0958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zhang, Huanhuan</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Jian, Binghua</creatorcontrib><creatorcontrib>jin, Jiang</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><title>Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1−yFeyO3−δ</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ (x = 0, 0.2, y = 0.1, 0.2, 0.3, 0.4) were prepared by the glycine–nitrate process. The electrochemical property and oxygen diffusion behavior of La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ were investigated. The electrochemical impedance spectroscopy analysis suggests that doping with an appropriate amount of iron and barium improves the catalytic performance. La 0.4 Sr 0.4 Ba 0.2 Co 0.9 Fe 0.1 O 3−δ calcined at 950 °C exhibits the minimum polarization resistance of 0.0349 Ω cm 2 at 750 °C. The doping of Fe improves the sintering performance. The crystalline size of La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ becomes smaller with the doping amount of Ba, which increase the number of active sites. The doping of Ba decreases the oxygen vacancy formation energy and increases the oxygen vacancy concentration, which accelerates the oxygen diffusion. Further, the single cell performance for La 0.4 Sr 0.4 Ba 0.2 Co 0.9 Fe 0.1 O 3−δ as cathode shows the maximum power density of 539.49 W cm −2 at 750 °C.</description><subject>Barium</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Diffusion</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Free energy</subject><subject>Glycine</subject><subject>Heat of formation</subject><subject>Iron</subject><subject>Materials Science</subject><subject>Maximum power density</subject><subject>Nitrates</subject><subject>Optical and Electronic Materials</subject><subject>Oxygen</subject><subject>Vacancies</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaRWLv4P_ESKgpIlbrgR-ysiWOXVG1S7FZqbsCas3AODsFJMASJHauZkd57o_chdErJiBKSn0dKCikwoRoTxnOF9R4aUJlzLAr2tI8GRMscC8nYITqKcUEIUYIXA_Q423Vz12RV7f021m2TQVNlbunsJrT22a1qC8ts7YJvwwoa67LWZ1MgI_X5-ra7C2QkLmE3bmk6u4nrZjwtH-_H6MDDMrqT3zlED5Or-_ENns6ub8cXU2w51RusnM9Bay5ECcJJ6cBRCdxSVYqyYl55ab3NnRRgS64EEO4r8CUDAGJTvSE663PXoX3Zurgxi3YbmvTSME6JYFoVKqlYr7KhjTE4b9ahXkHoDCXmm5_p-ZnEz_zwMzqZeG-KSdzMXfiL_sf1BeTcdzk</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhang, Huanhuan</creator><creator>Zhao, Lei</creator><creator>Jian, Binghua</creator><creator>jin, Jiang</creator><creator>Zhang, Hua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8514-0958</orcidid></search><sort><creationdate>20191101</creationdate><title>Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1−yFeyO3−δ</title><author>Zhang, Huanhuan ; Zhao, Lei ; Jian, Binghua ; jin, Jiang ; Zhang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Barium</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Diffusion</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Free energy</topic><topic>Glycine</topic><topic>Heat of formation</topic><topic>Iron</topic><topic>Materials Science</topic><topic>Maximum power density</topic><topic>Nitrates</topic><topic>Optical and Electronic Materials</topic><topic>Oxygen</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huanhuan</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Jian, Binghua</creatorcontrib><creatorcontrib>jin, Jiang</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Huanhuan</au><au>Zhao, Lei</au><au>Jian, Binghua</au><au>jin, Jiang</au><au>Zhang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1−yFeyO3−δ</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>30</volume><issue>22</issue><spage>20050</spage><epage>20057</epage><pages>20050-20057</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ (x = 0, 0.2, y = 0.1, 0.2, 0.3, 0.4) were prepared by the glycine–nitrate process. The electrochemical property and oxygen diffusion behavior of La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ were investigated. The electrochemical impedance spectroscopy analysis suggests that doping with an appropriate amount of iron and barium improves the catalytic performance. La 0.4 Sr 0.4 Ba 0.2 Co 0.9 Fe 0.1 O 3−δ calcined at 950 °C exhibits the minimum polarization resistance of 0.0349 Ω cm 2 at 750 °C. The doping of Fe improves the sintering performance. The crystalline size of La 0.6−x Sr 0.4 Ba x Co 1−y Fe y O 3−δ becomes smaller with the doping amount of Ba, which increase the number of active sites. The doping of Ba decreases the oxygen vacancy formation energy and increases the oxygen vacancy concentration, which accelerates the oxygen diffusion. Further, the single cell performance for La 0.4 Sr 0.4 Ba 0.2 Co 0.9 Fe 0.1 O 3−δ as cathode shows the maximum power density of 539.49 W cm −2 at 750 °C.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-02376-9</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8514-0958</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2019-11, Vol.30 (22), p.20050-20057
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2310429686
source Springer Link
subjects Barium
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystal structure
Diffusion
Doping
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrode polarization
Electrodes
Electrolytes
Free energy
Glycine
Heat of formation
Iron
Materials Science
Maximum power density
Nitrates
Optical and Electronic Materials
Oxygen
Vacancies
title Oxygen diffusion and electrochemical performance of La0.6−xSr0.4BaxCo1−yFeyO3−δ
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T08%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20diffusion%20and%20electrochemical%20performance%20of%20La0.6%E2%88%92xSr0.4BaxCo1%E2%88%92yFeyO3%E2%88%92%CE%B4&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhang,%20Huanhuan&rft.date=2019-11-01&rft.volume=30&rft.issue=22&rft.spage=20050&rft.epage=20057&rft.pages=20050-20057&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-02376-9&rft_dat=%3Cproquest_cross%3E2310429686%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-6ef7a99344ba4e55eae15a3c16b4bd2f6f5cfc7e54acb364a03fdafb2aaa0c573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2310429686&rft_id=info:pmid/&rfr_iscdi=true