Loading…
The Parameterization Method of Discrete VLF Chorus Emissions
We present a method for automatic search and parameterization of discrete elements of very low-frequency (VLF) chorus emissions. The method is based on the processing of dynamic spectrograms using a special scanning algorithm, which is intended for seeking the discrete elements of VLF chorus emissio...
Saved in:
Published in: | Radiophysics and quantum electronics 2019-08, Vol.62 (3), p.159-173 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a method for automatic search and parameterization of discrete elements of very low-frequency (VLF) chorus emissions. The method is based on the processing of dynamic spectrograms using a special scanning algorithm, which is intended for seeking the discrete elements of VLF chorus emissions and calculation of their parameters. We propose to create the optimal dynamic spectrograms for the scanning algorithm by using short-time Fourier transform. The paper gives general recommendations for calculation of spectrograms and their preprocessing. The scanning algorithm is based on processing of the dynamic-spectrogram images by using the methods of mathematical morphology. The developed method was tested for several cases of chorus emissions observed by the Van Allen Probes spacecraft. It is shown that the total errors related to “false positive” detection and missing the target are about 10% of the elements visible to the human eye when the optimal parameters of the scanning algorithm are used and intense discrete elements are processed. The method can be applied to both spacecraft and ground-based wave data. The results of using the method can be employed for verification of physical theories of the formation of chorus emissions and determining their statistical properties. |
---|---|
ISSN: | 0033-8443 1573-9120 |
DOI: | 10.1007/s11141-019-09964-z |