Loading…
PVRD-FASP: A Unified Solver for Modeling Carrier and Defect Transport in Photovoltaic Devices
In this article, we present a simulator for modeling transport of charge carriers and electrically active defect centers in solar cells by treating them on an equal footing, which allows us to address metastability and reliability issues. The exact nonlinear differential equations set solved by our...
Saved in:
Published in: | IEEE journal of photovoltaics 2019-11, Vol.9 (6), p.1602-1613 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, we present a simulator for modeling transport of charge carriers and electrically active defect centers in solar cells by treating them on an equal footing, which allows us to address metastability and reliability issues. The exact nonlinear differential equations set solved by our solver is presented. The formulation of such differential equations, namely the continuity equations, drift-diffusion equation, and Poisson equation, for studying charge and defect transport is explained. The parameters needed for forming the differential equations are taken from first principle calculations. The solver is verified with test cases built on PN heterojunctions, Cu diffusion in single crystal CdTe and comparing Silvaco simulations with our numerical results. |
---|---|
ISSN: | 2156-3381 2156-3403 |
DOI: | 10.1109/JPHOTOV.2019.2937238 |