Loading…

A Channel Model for Polarized Off-Body Communications With Dynamic Users

This paper presents an off-body channel model for polarized communications with dynamic users. The model is based on Geometrical Optics and Uniform Theory of Diffraction and accounts for free space propagation, reflections, and diffractions. It allows for arbitrary antennas' polarizations and g...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2019-11, Vol.67 (11), p.7001-7013
Main Authors: Turbic, Kenan, Correia, Luis M., Beko, Marko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an off-body channel model for polarized communications with dynamic users. The model is based on Geometrical Optics and Uniform Theory of Diffraction and accounts for free space propagation, reflections, and diffractions. It allows for arbitrary antennas' polarizations and gain patterns and supports a number of on-body antenna placements. In order to take the influence of users' motion into account, a mobility model for wearable antennas on dynamic users is used. Signal depolarization mechanisms are identified, and simulations are performed to analyze the influence of user dynamics on the channel. The results show that significant polarization mismatch losses occur due to wearable antenna rotations, resulting in received power variations up to 37.5 dB for the line-of-sight component and 41.4 dB for the scattered one. The importance of taking signal polarization into account is demonstrated by comparing the simulation results between polarized and nonpolarized channel models in a free space propagation scenario, where a difference up to 53 dB in between the two is observed.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2019.2925157