Loading…

Abnormal dependence of multiferroicity on high-temperature electro-poling in GdMn2O5

Magnetically induced ferroelectric polarization in rare-earth RMn2O5 manganites is believed to originate from the symmetric exchange striction associated with a specific antiferromagnetic phase in the low temperature (T) region and would be irrelevant with electropoling in the high-T paramagnetic-pa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2019-11, Vol.126 (17)
Main Authors: Zheng, S. H., Gong, J. J., Li, Y. Q., Li, C. F., Tang, Y. S., Zhang, J. H., Lin, L., Yan, Z. B., Jiang, X. P., Cheong, S. W., Liu, J.-M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnetically induced ferroelectric polarization in rare-earth RMn2O5 manganites is believed to originate from the symmetric exchange striction associated with a specific antiferromagnetic phase in the low temperature (T) region and would be irrelevant with electropoling in the high-T paramagnetic-paraelectric phase region. In this work, we demonstrate that low-T pyroelectric polarization of GdMn2O5 single crystals along the b axis in the antiferromagnetic phase exhibits remarkable dependence on the electropoling history imposed in the high-T paramagnetic-paraelectric phase. In particular, the high-T electropoling results in a reversal of ferroelectric polarization in the low-T region, which can be flopped back by the electropoling being sustained in the low-T ferroelectric region. The existence of an electrically polarizable magnetic cluster state in the high-T paramagnetic-paraelectric region is proposed based on a combination of experimental observations and first-principles calculations. An intrinsic correlation between the low-T antiferromagnetic ordering and the high-T polarizable state is discussed. The present experiments unveil the emergent phenomena on multiferroicity of RMn2O5 and suggest an alternative scenario for electrocontrol of magnetism.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5120971