Loading…

Constructions and uses of incomplete pairwise balanced designs

We give explicit constructions for incomplete pairwise balanced designs IPBD(( v ;  w ),  K ), or, equivalently, edge-decompositions of a difference of two cliques K v \ K w into cliques whose sizes belong to the set K . Our constructions produce such designs whenever v and w satisfy the usual divis...

Full description

Saved in:
Bibliographic Details
Published in:Designs, codes, and cryptography codes, and cryptography, 2019-12, Vol.87 (12), p.2729-2751
Main Authors: Dukes, Peter J., Lamken, Esther R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f0ce3f73d04a3591640d6b07658975b65088bdda89014f5c97fdff5c957120863
cites cdi_FETCH-LOGICAL-c319t-f0ce3f73d04a3591640d6b07658975b65088bdda89014f5c97fdff5c957120863
container_end_page 2751
container_issue 12
container_start_page 2729
container_title Designs, codes, and cryptography
container_volume 87
creator Dukes, Peter J.
Lamken, Esther R.
description We give explicit constructions for incomplete pairwise balanced designs IPBD(( v ;  w ),  K ), or, equivalently, edge-decompositions of a difference of two cliques K v \ K w into cliques whose sizes belong to the set K . Our constructions produce such designs whenever v and w satisfy the usual divisibility conditions, have ratio v  /  w bounded away from the smallest value in K minus one, say v / w > k - 1 + ϵ , for k = min K and ϵ > 0 , and are sufficiently large (depending on K and ϵ ). As a consequence, some new results are obtained on many related designs, including class-uniformly resolvable designs, incomplete mutually orthogonal latin squares, and group divisible designs. We also include several other applications that illustrate the power of using IPBDs as ‘templates’.
doi_str_mv 10.1007/s10623-019-00645-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311374145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311374145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f0ce3f73d04a3591640d6b07658975b65088bdda89014f5c97fdff5c957120863</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoOI7-gKuA6-h7SZO0G0EGHYUBN7oOaZMMHWbSmrSIf2_HCu5c3bc49z44hFwj3CKAvssIigsGWDEAVUimTsgCpRZMy1KdkgVUXDIEzs_JRc47AEABfEHuV13MQxqboZ0OaqOjY_aZdoG2sekO_d4Pnva2TZ9t9rS2exsb76jzud3GfEnOgt1nf_WbS_L-9Pi2emab1_XL6mHDGoHVwAI0XgQtHBRWyApVAU7VoJUsKy1rJaEsa-dsWQEWQTaVDi4cU2rkUCqxJDfzbp-6j9Hnwey6McXppeECUegCCzlRfKaa1OWcfDB9ag82fRkEc_RkZk9m8mR-PJnjtJhLeYLj1qe_6X9a38nqaew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311374145</pqid></control><display><type>article</type><title>Constructions and uses of incomplete pairwise balanced designs</title><source>Springer Nature</source><creator>Dukes, Peter J. ; Lamken, Esther R.</creator><creatorcontrib>Dukes, Peter J. ; Lamken, Esther R.</creatorcontrib><description>We give explicit constructions for incomplete pairwise balanced designs IPBD(( v ;  w ),  K ), or, equivalently, edge-decompositions of a difference of two cliques K v \ K w into cliques whose sizes belong to the set K . Our constructions produce such designs whenever v and w satisfy the usual divisibility conditions, have ratio v  /  w bounded away from the smallest value in K minus one, say v / w &gt; k - 1 + ϵ , for k = min K and ϵ &gt; 0 , and are sufficiently large (depending on K and ϵ ). As a consequence, some new results are obtained on many related designs, including class-uniformly resolvable designs, incomplete mutually orthogonal latin squares, and group divisible designs. We also include several other applications that illustrate the power of using IPBDs as ‘templates’.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-019-00645-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Circuits ; Coding and Information Theory ; Computer Science ; Cryptology ; Data Structures and Information Theory ; Discrete Mathematics in Computer Science ; Information and Communication ; Latin square design</subject><ispartof>Designs, codes, and cryptography, 2019-12, Vol.87 (12), p.2729-2751</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f0ce3f73d04a3591640d6b07658975b65088bdda89014f5c97fdff5c957120863</citedby><cites>FETCH-LOGICAL-c319t-f0ce3f73d04a3591640d6b07658975b65088bdda89014f5c97fdff5c957120863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Dukes, Peter J.</creatorcontrib><creatorcontrib>Lamken, Esther R.</creatorcontrib><title>Constructions and uses of incomplete pairwise balanced designs</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>We give explicit constructions for incomplete pairwise balanced designs IPBD(( v ;  w ),  K ), or, equivalently, edge-decompositions of a difference of two cliques K v \ K w into cliques whose sizes belong to the set K . Our constructions produce such designs whenever v and w satisfy the usual divisibility conditions, have ratio v  /  w bounded away from the smallest value in K minus one, say v / w &gt; k - 1 + ϵ , for k = min K and ϵ &gt; 0 , and are sufficiently large (depending on K and ϵ ). As a consequence, some new results are obtained on many related designs, including class-uniformly resolvable designs, incomplete mutually orthogonal latin squares, and group divisible designs. We also include several other applications that illustrate the power of using IPBDs as ‘templates’.</description><subject>Arrays</subject><subject>Circuits</subject><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Structures and Information Theory</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Information and Communication</subject><subject>Latin square design</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoOI7-gKuA6-h7SZO0G0EGHYUBN7oOaZMMHWbSmrSIf2_HCu5c3bc49z44hFwj3CKAvssIigsGWDEAVUimTsgCpRZMy1KdkgVUXDIEzs_JRc47AEABfEHuV13MQxqboZ0OaqOjY_aZdoG2sekO_d4Pnva2TZ9t9rS2exsb76jzud3GfEnOgt1nf_WbS_L-9Pi2emab1_XL6mHDGoHVwAI0XgQtHBRWyApVAU7VoJUsKy1rJaEsa-dsWQEWQTaVDi4cU2rkUCqxJDfzbp-6j9Hnwey6McXppeECUegCCzlRfKaa1OWcfDB9ag82fRkEc_RkZk9m8mR-PJnjtJhLeYLj1qe_6X9a38nqaew</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Dukes, Peter J.</creator><creator>Lamken, Esther R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191201</creationdate><title>Constructions and uses of incomplete pairwise balanced designs</title><author>Dukes, Peter J. ; Lamken, Esther R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f0ce3f73d04a3591640d6b07658975b65088bdda89014f5c97fdff5c957120863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrays</topic><topic>Circuits</topic><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Structures and Information Theory</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Information and Communication</topic><topic>Latin square design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dukes, Peter J.</creatorcontrib><creatorcontrib>Lamken, Esther R.</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dukes, Peter J.</au><au>Lamken, Esther R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructions and uses of incomplete pairwise balanced designs</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>87</volume><issue>12</issue><spage>2729</spage><epage>2751</epage><pages>2729-2751</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>We give explicit constructions for incomplete pairwise balanced designs IPBD(( v ;  w ),  K ), or, equivalently, edge-decompositions of a difference of two cliques K v \ K w into cliques whose sizes belong to the set K . Our constructions produce such designs whenever v and w satisfy the usual divisibility conditions, have ratio v  /  w bounded away from the smallest value in K minus one, say v / w &gt; k - 1 + ϵ , for k = min K and ϵ &gt; 0 , and are sufficiently large (depending on K and ϵ ). As a consequence, some new results are obtained on many related designs, including class-uniformly resolvable designs, incomplete mutually orthogonal latin squares, and group divisible designs. We also include several other applications that illustrate the power of using IPBDs as ‘templates’.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-019-00645-6</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2019-12, Vol.87 (12), p.2729-2751
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_2311374145
source Springer Nature
subjects Arrays
Circuits
Coding and Information Theory
Computer Science
Cryptology
Data Structures and Information Theory
Discrete Mathematics in Computer Science
Information and Communication
Latin square design
title Constructions and uses of incomplete pairwise balanced designs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructions%20and%20uses%20of%20incomplete%20pairwise%20balanced%20designs&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Dukes,%20Peter%20J.&rft.date=2019-12-01&rft.volume=87&rft.issue=12&rft.spage=2729&rft.epage=2751&rft.pages=2729-2751&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-019-00645-6&rft_dat=%3Cproquest_cross%3E2311374145%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f0ce3f73d04a3591640d6b07658975b65088bdda89014f5c97fdff5c957120863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2311374145&rft_id=info:pmid/&rfr_iscdi=true