Loading…

On the shear viscosity of dilute suspension containing elliptical porous particles at low Reynolds number

In view of the significance of non-spherical and permeable particles in liquid-solid and gas-liquid-solid reactors in industrial processes, it is essential to understand and quantify the rheological properties of multiphase flows in these processes. In this study, we investigate the shear viscosity...

Full description

Saved in:
Bibliographic Details
Published in:Powder technology 2019-09, Vol.354, p.108-114
Main Authors: Liu, Jiajia, Li, Chenggong, Ye, Mao, Liu, Zhongmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c437t-2584e65e29ef1cac961d7ecd181077fd89867c1db0d3286b96007db932cf5c7d3
cites cdi_FETCH-LOGICAL-c437t-2584e65e29ef1cac961d7ecd181077fd89867c1db0d3286b96007db932cf5c7d3
container_end_page 114
container_issue
container_start_page 108
container_title Powder technology
container_volume 354
creator Liu, Jiajia
Li, Chenggong
Ye, Mao
Liu, Zhongmin
description In view of the significance of non-spherical and permeable particles in liquid-solid and gas-liquid-solid reactors in industrial processes, it is essential to understand and quantify the rheological properties of multiphase flows in these processes. In this study, we investigate the shear viscosity of dilute suspension containing elliptical porous particles at low Reynolds number Re of O(0) by use of a modified lattice Boltzmann model. The fluid flow around and inside an elliptical porous particle is described by the volume-averaged macroscopic governing equations. The relative viscosity is calculated for an elliptical porous particle rotating in a two-dimensional (2D) simple shear flow, based on the relation between the shear stress and the second order moments of non-equilibrium particle distribution function. The effects of porous structure of the elliptical particle on the viscosity and flow field are investigated with different axis ratios in detail. Our results demonstrate that the relative viscosities of dilute suspension containing elliptical porous particles increase linearly with solid volume fraction at various Darcy number for particles with varying axis ratios. Moreover, a simple empirical expression for intrinsic viscosity is proposed as a function of Darcy number. [Display omitted] •Relative viscosity of multiphase flow increases linearly with Darcy number.•Intrinsic viscosity of suspension decreases monotonously with Darcy number.•A simple empirical formula is proposed to account for the change of intrinsic viscosity.
doi_str_mv 10.1016/j.powtec.2019.05.068
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311529480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591019304152</els_id><sourcerecordid>2311529480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-2584e65e29ef1cac961d7ecd181077fd89867c1db0d3286b96007db932cf5c7d3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Bx4Cnlsn_Up7EWTxCxYWRMFbaJOpm9JNapLusv-9XerZ0zDMe294P0JuGcQMWHHfxYM9BJRxAqyKIY-hKM_IgpU8jdKk_DonC4A0ifKKwSW58r4DgCJlsCB6Y2jYIvVbrB3day-t1-FIbUuV7scwXUY_oPHaGiqtCbU22nxT7Hs9BC3rng7W2dHToXbT3qOndaC9PdB3PBrbK0_NuGvQXZOLtu493vzNJfl8fvpYvUbrzcvb6nEdySzlIUryMsMix6TClslaVgVTHKViJQPOW1VWZcElUw2oqVrRVAUAV02VJrLNJVfpktzNuYOzPyP6IDo7OjO9FEnKWJ5UWQmTKptV0lnvHbZicHpXu6NgIE5QRSdmqOIEVUAuJqiT7WG24dRgr9EJLzUaiUo7lEEoq_8P-AX1aIRy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311529480</pqid></control><display><type>article</type><title>On the shear viscosity of dilute suspension containing elliptical porous particles at low Reynolds number</title><source>Elsevier</source><creator>Liu, Jiajia ; Li, Chenggong ; Ye, Mao ; Liu, Zhongmin</creator><creatorcontrib>Liu, Jiajia ; Li, Chenggong ; Ye, Mao ; Liu, Zhongmin</creatorcontrib><description>In view of the significance of non-spherical and permeable particles in liquid-solid and gas-liquid-solid reactors in industrial processes, it is essential to understand and quantify the rheological properties of multiphase flows in these processes. In this study, we investigate the shear viscosity of dilute suspension containing elliptical porous particles at low Reynolds number Re of O(0) by use of a modified lattice Boltzmann model. The fluid flow around and inside an elliptical porous particle is described by the volume-averaged macroscopic governing equations. The relative viscosity is calculated for an elliptical porous particle rotating in a two-dimensional (2D) simple shear flow, based on the relation between the shear stress and the second order moments of non-equilibrium particle distribution function. The effects of porous structure of the elliptical particle on the viscosity and flow field are investigated with different axis ratios in detail. Our results demonstrate that the relative viscosities of dilute suspension containing elliptical porous particles increase linearly with solid volume fraction at various Darcy number for particles with varying axis ratios. Moreover, a simple empirical expression for intrinsic viscosity is proposed as a function of Darcy number. [Display omitted] •Relative viscosity of multiphase flow increases linearly with Darcy number.•Intrinsic viscosity of suspension decreases monotonously with Darcy number.•A simple empirical formula is proposed to account for the change of intrinsic viscosity.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2019.05.068</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Computational fluid dynamics ; Darcy number ; Dilution ; Distribution functions ; Elliptical porous particle ; Fluid flow ; Intrinsic viscosity ; Lattice Boltzmann model ; Multiphase flow ; Particulates ; Relative viscosity ; Reynolds number ; Rheological properties ; Shear flow ; Shear stress ; Shear viscosity ; Two dimensional flow ; Viscosity</subject><ispartof>Powder technology, 2019-09, Vol.354, p.108-114</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-2584e65e29ef1cac961d7ecd181077fd89867c1db0d3286b96007db932cf5c7d3</citedby><cites>FETCH-LOGICAL-c437t-2584e65e29ef1cac961d7ecd181077fd89867c1db0d3286b96007db932cf5c7d3</cites><orcidid>0000-0002-4019-8125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Liu, Jiajia</creatorcontrib><creatorcontrib>Li, Chenggong</creatorcontrib><creatorcontrib>Ye, Mao</creatorcontrib><creatorcontrib>Liu, Zhongmin</creatorcontrib><title>On the shear viscosity of dilute suspension containing elliptical porous particles at low Reynolds number</title><title>Powder technology</title><description>In view of the significance of non-spherical and permeable particles in liquid-solid and gas-liquid-solid reactors in industrial processes, it is essential to understand and quantify the rheological properties of multiphase flows in these processes. In this study, we investigate the shear viscosity of dilute suspension containing elliptical porous particles at low Reynolds number Re of O(0) by use of a modified lattice Boltzmann model. The fluid flow around and inside an elliptical porous particle is described by the volume-averaged macroscopic governing equations. The relative viscosity is calculated for an elliptical porous particle rotating in a two-dimensional (2D) simple shear flow, based on the relation between the shear stress and the second order moments of non-equilibrium particle distribution function. The effects of porous structure of the elliptical particle on the viscosity and flow field are investigated with different axis ratios in detail. Our results demonstrate that the relative viscosities of dilute suspension containing elliptical porous particles increase linearly with solid volume fraction at various Darcy number for particles with varying axis ratios. Moreover, a simple empirical expression for intrinsic viscosity is proposed as a function of Darcy number. [Display omitted] •Relative viscosity of multiphase flow increases linearly with Darcy number.•Intrinsic viscosity of suspension decreases monotonously with Darcy number.•A simple empirical formula is proposed to account for the change of intrinsic viscosity.</description><subject>Computational fluid dynamics</subject><subject>Darcy number</subject><subject>Dilution</subject><subject>Distribution functions</subject><subject>Elliptical porous particle</subject><subject>Fluid flow</subject><subject>Intrinsic viscosity</subject><subject>Lattice Boltzmann model</subject><subject>Multiphase flow</subject><subject>Particulates</subject><subject>Relative viscosity</subject><subject>Reynolds number</subject><subject>Rheological properties</subject><subject>Shear flow</subject><subject>Shear stress</subject><subject>Shear viscosity</subject><subject>Two dimensional flow</subject><subject>Viscosity</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Bx4Cnlsn_Up7EWTxCxYWRMFbaJOpm9JNapLusv-9XerZ0zDMe294P0JuGcQMWHHfxYM9BJRxAqyKIY-hKM_IgpU8jdKk_DonC4A0ifKKwSW58r4DgCJlsCB6Y2jYIvVbrB3day-t1-FIbUuV7scwXUY_oPHaGiqtCbU22nxT7Hs9BC3rng7W2dHToXbT3qOndaC9PdB3PBrbK0_NuGvQXZOLtu493vzNJfl8fvpYvUbrzcvb6nEdySzlIUryMsMix6TClslaVgVTHKViJQPOW1VWZcElUw2oqVrRVAUAV02VJrLNJVfpktzNuYOzPyP6IDo7OjO9FEnKWJ5UWQmTKptV0lnvHbZicHpXu6NgIE5QRSdmqOIEVUAuJqiT7WG24dRgr9EJLzUaiUo7lEEoq_8P-AX1aIRy</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Liu, Jiajia</creator><creator>Li, Chenggong</creator><creator>Ye, Mao</creator><creator>Liu, Zhongmin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4019-8125</orcidid></search><sort><creationdate>20190901</creationdate><title>On the shear viscosity of dilute suspension containing elliptical porous particles at low Reynolds number</title><author>Liu, Jiajia ; Li, Chenggong ; Ye, Mao ; Liu, Zhongmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-2584e65e29ef1cac961d7ecd181077fd89867c1db0d3286b96007db932cf5c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Darcy number</topic><topic>Dilution</topic><topic>Distribution functions</topic><topic>Elliptical porous particle</topic><topic>Fluid flow</topic><topic>Intrinsic viscosity</topic><topic>Lattice Boltzmann model</topic><topic>Multiphase flow</topic><topic>Particulates</topic><topic>Relative viscosity</topic><topic>Reynolds number</topic><topic>Rheological properties</topic><topic>Shear flow</topic><topic>Shear stress</topic><topic>Shear viscosity</topic><topic>Two dimensional flow</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiajia</creatorcontrib><creatorcontrib>Li, Chenggong</creatorcontrib><creatorcontrib>Ye, Mao</creatorcontrib><creatorcontrib>Liu, Zhongmin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiajia</au><au>Li, Chenggong</au><au>Ye, Mao</au><au>Liu, Zhongmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the shear viscosity of dilute suspension containing elliptical porous particles at low Reynolds number</atitle><jtitle>Powder technology</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>354</volume><spage>108</spage><epage>114</epage><pages>108-114</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>In view of the significance of non-spherical and permeable particles in liquid-solid and gas-liquid-solid reactors in industrial processes, it is essential to understand and quantify the rheological properties of multiphase flows in these processes. In this study, we investigate the shear viscosity of dilute suspension containing elliptical porous particles at low Reynolds number Re of O(0) by use of a modified lattice Boltzmann model. The fluid flow around and inside an elliptical porous particle is described by the volume-averaged macroscopic governing equations. The relative viscosity is calculated for an elliptical porous particle rotating in a two-dimensional (2D) simple shear flow, based on the relation between the shear stress and the second order moments of non-equilibrium particle distribution function. The effects of porous structure of the elliptical particle on the viscosity and flow field are investigated with different axis ratios in detail. Our results demonstrate that the relative viscosities of dilute suspension containing elliptical porous particles increase linearly with solid volume fraction at various Darcy number for particles with varying axis ratios. Moreover, a simple empirical expression for intrinsic viscosity is proposed as a function of Darcy number. [Display omitted] •Relative viscosity of multiphase flow increases linearly with Darcy number.•Intrinsic viscosity of suspension decreases monotonously with Darcy number.•A simple empirical formula is proposed to account for the change of intrinsic viscosity.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2019.05.068</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4019-8125</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2019-09, Vol.354, p.108-114
issn 0032-5910
1873-328X
language eng
recordid cdi_proquest_journals_2311529480
source Elsevier
subjects Computational fluid dynamics
Darcy number
Dilution
Distribution functions
Elliptical porous particle
Fluid flow
Intrinsic viscosity
Lattice Boltzmann model
Multiphase flow
Particulates
Relative viscosity
Reynolds number
Rheological properties
Shear flow
Shear stress
Shear viscosity
Two dimensional flow
Viscosity
title On the shear viscosity of dilute suspension containing elliptical porous particles at low Reynolds number
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20shear%20viscosity%20of%20dilute%20suspension%20containing%20elliptical%20porous%20particles%20at%20low%20Reynolds%20number&rft.jtitle=Powder%20technology&rft.au=Liu,%20Jiajia&rft.date=2019-09-01&rft.volume=354&rft.spage=108&rft.epage=114&rft.pages=108-114&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2019.05.068&rft_dat=%3Cproquest_cross%3E2311529480%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c437t-2584e65e29ef1cac961d7ecd181077fd89867c1db0d3286b96007db932cf5c7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2311529480&rft_id=info:pmid/&rfr_iscdi=true