Loading…

Empathetic decision making in social networks

Social networks play a central role in the transactions and decision making of individuals by correlating the behaviors and preferences of connected agents. We introduce a notion of empathy in social networks, in which individuals derive utility based on both their own intrinsic preferences, and emp...

Full description

Saved in:
Bibliographic Details
Published in:Artificial intelligence 2019-10, Vol.275, p.174-203
Main Authors: Salehi-Abari, Amirali, Boutilier, Craig, Larson, Kate
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113
cites cdi_FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113
container_end_page 203
container_issue
container_start_page 174
container_title Artificial intelligence
container_volume 275
creator Salehi-Abari, Amirali
Boutilier, Craig
Larson, Kate
description Social networks play a central role in the transactions and decision making of individuals by correlating the behaviors and preferences of connected agents. We introduce a notion of empathy in social networks, in which individuals derive utility based on both their own intrinsic preferences, and empathetic preferences determined by the satisfaction of their neighbors in the network. After theoretically analyzing the properties of our empathetic framework, we study the problem of group recommendation, or consensus decision making, within this framework. We show how this problem translates into a weighted form of classical preference aggregation (e.g., social welfare maximization or certain forms of voting), and develop scalable optimization algorithms for this task. Furthermore, we show that our framework can be generalized to encompass other multiagent systems problems, such as constrained resource allocation, and provide scalable iterative algorithms for these generalizations. Our empirical experiments demonstrate the value of accounting for empathetic preferences in group decisions, and the tractability of our algorithms.
doi_str_mv 10.1016/j.artint.2019.05.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311933739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370219301316</els_id><sourcerecordid>2311933739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Fz62ZJG2aiyDL-gELXvQc0nSq6W7bNckq_nuz1LOnYYb3g3kIuQZaAIXqti-Mj26MBaOgCloWlIoTsoBaslwqBqdkQdMp55Kyc3IRQp9WrhQsSL4e9iZ-YHQ2a9G64KYxG8zWje-ZG7MwWWd22Yjxe_LbcEnOOrMLePU3l-TtYf26eso3L4_Pq_tNbnlNY141omxSL1NYiw6xKi3vqqrpVNsKio2QJVQtxQqklTUajm0jAExnBZMMgC_JzZy799PnAUPU_XTwY6rUjAMoziVXSSVmlfVTCB47vfduMP5HA9VHMLrXMxh9BKNpqROFZLubbZg--HLodbAOR4ut82ijbif3f8AvBQZtJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311933739</pqid></control><display><type>article</type><title>Empathetic decision making in social networks</title><source>ScienceDirect Journals</source><creator>Salehi-Abari, Amirali ; Boutilier, Craig ; Larson, Kate</creator><creatorcontrib>Salehi-Abari, Amirali ; Boutilier, Craig ; Larson, Kate</creatorcontrib><description>Social networks play a central role in the transactions and decision making of individuals by correlating the behaviors and preferences of connected agents. We introduce a notion of empathy in social networks, in which individuals derive utility based on both their own intrinsic preferences, and empathetic preferences determined by the satisfaction of their neighbors in the network. After theoretically analyzing the properties of our empathetic framework, we study the problem of group recommendation, or consensus decision making, within this framework. We show how this problem translates into a weighted form of classical preference aggregation (e.g., social welfare maximization or certain forms of voting), and develop scalable optimization algorithms for this task. Furthermore, we show that our framework can be generalized to encompass other multiagent systems problems, such as constrained resource allocation, and provide scalable iterative algorithms for these generalizations. Our empirical experiments demonstrate the value of accounting for empathetic preferences in group decisions, and the tractability of our algorithms.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2019.05.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Decision making ; Empathetic preferences ; Empirical analysis ; Iterative algorithms ; Multiagent systems ; Optimization ; Resource allocation ; Social choice ; Social networks</subject><ispartof>Artificial intelligence, 2019-10, Vol.275, p.174-203</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113</citedby><cites>FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Salehi-Abari, Amirali</creatorcontrib><creatorcontrib>Boutilier, Craig</creatorcontrib><creatorcontrib>Larson, Kate</creatorcontrib><title>Empathetic decision making in social networks</title><title>Artificial intelligence</title><description>Social networks play a central role in the transactions and decision making of individuals by correlating the behaviors and preferences of connected agents. We introduce a notion of empathy in social networks, in which individuals derive utility based on both their own intrinsic preferences, and empathetic preferences determined by the satisfaction of their neighbors in the network. After theoretically analyzing the properties of our empathetic framework, we study the problem of group recommendation, or consensus decision making, within this framework. We show how this problem translates into a weighted form of classical preference aggregation (e.g., social welfare maximization or certain forms of voting), and develop scalable optimization algorithms for this task. Furthermore, we show that our framework can be generalized to encompass other multiagent systems problems, such as constrained resource allocation, and provide scalable iterative algorithms for these generalizations. Our empirical experiments demonstrate the value of accounting for empathetic preferences in group decisions, and the tractability of our algorithms.</description><subject>Algorithms</subject><subject>Decision making</subject><subject>Empathetic preferences</subject><subject>Empirical analysis</subject><subject>Iterative algorithms</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Social choice</subject><subject>Social networks</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Fz62ZJG2aiyDL-gELXvQc0nSq6W7bNckq_nuz1LOnYYb3g3kIuQZaAIXqti-Mj26MBaOgCloWlIoTsoBaslwqBqdkQdMp55Kyc3IRQp9WrhQsSL4e9iZ-YHQ2a9G64KYxG8zWje-ZG7MwWWd22Yjxe_LbcEnOOrMLePU3l-TtYf26eso3L4_Pq_tNbnlNY141omxSL1NYiw6xKi3vqqrpVNsKio2QJVQtxQqklTUajm0jAExnBZMMgC_JzZy799PnAUPU_XTwY6rUjAMoziVXSSVmlfVTCB47vfduMP5HA9VHMLrXMxh9BKNpqROFZLubbZg--HLodbAOR4ut82ijbif3f8AvBQZtJA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Salehi-Abari, Amirali</creator><creator>Boutilier, Craig</creator><creator>Larson, Kate</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201910</creationdate><title>Empathetic decision making in social networks</title><author>Salehi-Abari, Amirali ; Boutilier, Craig ; Larson, Kate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Decision making</topic><topic>Empathetic preferences</topic><topic>Empirical analysis</topic><topic>Iterative algorithms</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Social choice</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salehi-Abari, Amirali</creatorcontrib><creatorcontrib>Boutilier, Craig</creatorcontrib><creatorcontrib>Larson, Kate</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salehi-Abari, Amirali</au><au>Boutilier, Craig</au><au>Larson, Kate</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empathetic decision making in social networks</atitle><jtitle>Artificial intelligence</jtitle><date>2019-10</date><risdate>2019</risdate><volume>275</volume><spage>174</spage><epage>203</epage><pages>174-203</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>Social networks play a central role in the transactions and decision making of individuals by correlating the behaviors and preferences of connected agents. We introduce a notion of empathy in social networks, in which individuals derive utility based on both their own intrinsic preferences, and empathetic preferences determined by the satisfaction of their neighbors in the network. After theoretically analyzing the properties of our empathetic framework, we study the problem of group recommendation, or consensus decision making, within this framework. We show how this problem translates into a weighted form of classical preference aggregation (e.g., social welfare maximization or certain forms of voting), and develop scalable optimization algorithms for this task. Furthermore, we show that our framework can be generalized to encompass other multiagent systems problems, such as constrained resource allocation, and provide scalable iterative algorithms for these generalizations. Our empirical experiments demonstrate the value of accounting for empathetic preferences in group decisions, and the tractability of our algorithms.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2019.05.004</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 2019-10, Vol.275, p.174-203
issn 0004-3702
1872-7921
language eng
recordid cdi_proquest_journals_2311933739
source ScienceDirect Journals
subjects Algorithms
Decision making
Empathetic preferences
Empirical analysis
Iterative algorithms
Multiagent systems
Optimization
Resource allocation
Social choice
Social networks
title Empathetic decision making in social networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empathetic%20decision%20making%20in%20social%20networks&rft.jtitle=Artificial%20intelligence&rft.au=Salehi-Abari,%20Amirali&rft.date=2019-10&rft.volume=275&rft.spage=174&rft.epage=203&rft.pages=174-203&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2019.05.004&rft_dat=%3Cproquest_cross%3E2311933739%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2311933739&rft_id=info:pmid/&rfr_iscdi=true