Loading…
Empathetic decision making in social networks
Social networks play a central role in the transactions and decision making of individuals by correlating the behaviors and preferences of connected agents. We introduce a notion of empathy in social networks, in which individuals derive utility based on both their own intrinsic preferences, and emp...
Saved in:
Published in: | Artificial intelligence 2019-10, Vol.275, p.174-203 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113 |
container_end_page | 203 |
container_issue | |
container_start_page | 174 |
container_title | Artificial intelligence |
container_volume | 275 |
creator | Salehi-Abari, Amirali Boutilier, Craig Larson, Kate |
description | Social networks play a central role in the transactions and decision making of individuals by correlating the behaviors and preferences of connected agents. We introduce a notion of empathy in social networks, in which individuals derive utility based on both their own intrinsic preferences, and empathetic preferences determined by the satisfaction of their neighbors in the network. After theoretically analyzing the properties of our empathetic framework, we study the problem of group recommendation, or consensus decision making, within this framework. We show how this problem translates into a weighted form of classical preference aggregation (e.g., social welfare maximization or certain forms of voting), and develop scalable optimization algorithms for this task. Furthermore, we show that our framework can be generalized to encompass other multiagent systems problems, such as constrained resource allocation, and provide scalable iterative algorithms for these generalizations. Our empirical experiments demonstrate the value of accounting for empathetic preferences in group decisions, and the tractability of our algorithms. |
doi_str_mv | 10.1016/j.artint.2019.05.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2311933739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370219301316</els_id><sourcerecordid>2311933739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8Fz62ZJG2aiyDL-gELXvQc0nSq6W7bNckq_nuz1LOnYYb3g3kIuQZaAIXqti-Mj26MBaOgCloWlIoTsoBaslwqBqdkQdMp55Kyc3IRQp9WrhQsSL4e9iZ-YHQ2a9G64KYxG8zWje-ZG7MwWWd22Yjxe_LbcEnOOrMLePU3l-TtYf26eso3L4_Pq_tNbnlNY141omxSL1NYiw6xKi3vqqrpVNsKio2QJVQtxQqklTUajm0jAExnBZMMgC_JzZy799PnAUPU_XTwY6rUjAMoziVXSSVmlfVTCB47vfduMP5HA9VHMLrXMxh9BKNpqROFZLubbZg--HLodbAOR4ut82ijbif3f8AvBQZtJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311933739</pqid></control><display><type>article</type><title>Empathetic decision making in social networks</title><source>ScienceDirect Journals</source><creator>Salehi-Abari, Amirali ; Boutilier, Craig ; Larson, Kate</creator><creatorcontrib>Salehi-Abari, Amirali ; Boutilier, Craig ; Larson, Kate</creatorcontrib><description>Social networks play a central role in the transactions and decision making of individuals by correlating the behaviors and preferences of connected agents. We introduce a notion of empathy in social networks, in which individuals derive utility based on both their own intrinsic preferences, and empathetic preferences determined by the satisfaction of their neighbors in the network. After theoretically analyzing the properties of our empathetic framework, we study the problem of group recommendation, or consensus decision making, within this framework. We show how this problem translates into a weighted form of classical preference aggregation (e.g., social welfare maximization or certain forms of voting), and develop scalable optimization algorithms for this task. Furthermore, we show that our framework can be generalized to encompass other multiagent systems problems, such as constrained resource allocation, and provide scalable iterative algorithms for these generalizations. Our empirical experiments demonstrate the value of accounting for empathetic preferences in group decisions, and the tractability of our algorithms.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2019.05.004</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Decision making ; Empathetic preferences ; Empirical analysis ; Iterative algorithms ; Multiagent systems ; Optimization ; Resource allocation ; Social choice ; Social networks</subject><ispartof>Artificial intelligence, 2019-10, Vol.275, p.174-203</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113</citedby><cites>FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Salehi-Abari, Amirali</creatorcontrib><creatorcontrib>Boutilier, Craig</creatorcontrib><creatorcontrib>Larson, Kate</creatorcontrib><title>Empathetic decision making in social networks</title><title>Artificial intelligence</title><description>Social networks play a central role in the transactions and decision making of individuals by correlating the behaviors and preferences of connected agents. We introduce a notion of empathy in social networks, in which individuals derive utility based on both their own intrinsic preferences, and empathetic preferences determined by the satisfaction of their neighbors in the network. After theoretically analyzing the properties of our empathetic framework, we study the problem of group recommendation, or consensus decision making, within this framework. We show how this problem translates into a weighted form of classical preference aggregation (e.g., social welfare maximization or certain forms of voting), and develop scalable optimization algorithms for this task. Furthermore, we show that our framework can be generalized to encompass other multiagent systems problems, such as constrained resource allocation, and provide scalable iterative algorithms for these generalizations. Our empirical experiments demonstrate the value of accounting for empathetic preferences in group decisions, and the tractability of our algorithms.</description><subject>Algorithms</subject><subject>Decision making</subject><subject>Empathetic preferences</subject><subject>Empirical analysis</subject><subject>Iterative algorithms</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Social choice</subject><subject>Social networks</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8Fz62ZJG2aiyDL-gELXvQc0nSq6W7bNckq_nuz1LOnYYb3g3kIuQZaAIXqti-Mj26MBaOgCloWlIoTsoBaslwqBqdkQdMp55Kyc3IRQp9WrhQsSL4e9iZ-YHQ2a9G64KYxG8zWje-ZG7MwWWd22Yjxe_LbcEnOOrMLePU3l-TtYf26eso3L4_Pq_tNbnlNY141omxSL1NYiw6xKi3vqqrpVNsKio2QJVQtxQqklTUajm0jAExnBZMMgC_JzZy799PnAUPU_XTwY6rUjAMoziVXSSVmlfVTCB47vfduMP5HA9VHMLrXMxh9BKNpqROFZLubbZg--HLodbAOR4ut82ijbif3f8AvBQZtJA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Salehi-Abari, Amirali</creator><creator>Boutilier, Craig</creator><creator>Larson, Kate</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201910</creationdate><title>Empathetic decision making in social networks</title><author>Salehi-Abari, Amirali ; Boutilier, Craig ; Larson, Kate</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Decision making</topic><topic>Empathetic preferences</topic><topic>Empirical analysis</topic><topic>Iterative algorithms</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Social choice</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salehi-Abari, Amirali</creatorcontrib><creatorcontrib>Boutilier, Craig</creatorcontrib><creatorcontrib>Larson, Kate</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salehi-Abari, Amirali</au><au>Boutilier, Craig</au><au>Larson, Kate</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empathetic decision making in social networks</atitle><jtitle>Artificial intelligence</jtitle><date>2019-10</date><risdate>2019</risdate><volume>275</volume><spage>174</spage><epage>203</epage><pages>174-203</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><abstract>Social networks play a central role in the transactions and decision making of individuals by correlating the behaviors and preferences of connected agents. We introduce a notion of empathy in social networks, in which individuals derive utility based on both their own intrinsic preferences, and empathetic preferences determined by the satisfaction of their neighbors in the network. After theoretically analyzing the properties of our empathetic framework, we study the problem of group recommendation, or consensus decision making, within this framework. We show how this problem translates into a weighted form of classical preference aggregation (e.g., social welfare maximization or certain forms of voting), and develop scalable optimization algorithms for this task. Furthermore, we show that our framework can be generalized to encompass other multiagent systems problems, such as constrained resource allocation, and provide scalable iterative algorithms for these generalizations. Our empirical experiments demonstrate the value of accounting for empathetic preferences in group decisions, and the tractability of our algorithms.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2019.05.004</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-3702 |
ispartof | Artificial intelligence, 2019-10, Vol.275, p.174-203 |
issn | 0004-3702 1872-7921 |
language | eng |
recordid | cdi_proquest_journals_2311933739 |
source | ScienceDirect Journals |
subjects | Algorithms Decision making Empathetic preferences Empirical analysis Iterative algorithms Multiagent systems Optimization Resource allocation Social choice Social networks |
title | Empathetic decision making in social networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empathetic%20decision%20making%20in%20social%20networks&rft.jtitle=Artificial%20intelligence&rft.au=Salehi-Abari,%20Amirali&rft.date=2019-10&rft.volume=275&rft.spage=174&rft.epage=203&rft.pages=174-203&rft.issn=0004-3702&rft.eissn=1872-7921&rft_id=info:doi/10.1016/j.artint.2019.05.004&rft_dat=%3Cproquest_cross%3E2311933739%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-6b45b92129e84fee65c3f66bf9dd40eb47516d0e617c78ea3edb411afc4272113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2311933739&rft_id=info:pmid/&rfr_iscdi=true |