Loading…

An Online Virtual Metrology Model With Sample Selection for the Tracking of Dynamic Manufacturing Processes With Slow Drift

Modeling of dynamic manufacturing processes with slow drift using data-driven approaches is challenging because most data-driven models are trained by off-line data. In this paper, we propose to track slow drift of manufacturing processes using an online Bayesian Auto-Regression eXogenous (ARX) mode...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on semiconductor manufacturing 2019-11, Vol.32 (4), p.574-582
Main Authors: Feng, Jianshe, Jia, Xiaodong, Zhu, Feng, Moyne, James, Iskandar, Jimmy, Lee, Jay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Modeling of dynamic manufacturing processes with slow drift using data-driven approaches is challenging because most data-driven models are trained by off-line data. In this paper, we propose to track slow drift of manufacturing processes using an online Bayesian Auto-Regression eXogenous (ARX) model with time-variant parameters. The model parameters are trained off-line and are updated online using Bayes' rule. To avoid the frequent online model update, a Sample Importance (SI) test is proposed to screen online samples and only the sample that passes SI test is incremented to the VM model. The SI test decides the importance of the sample by collectively considering sample freshness, model prediction error and prediction uncertainty. Furthermore, the SI test is applied to off-line Data Base (DB) and an iteration algorithm is devised for off-line sample selection. The off-line sample selection algorithm can effectively reduce the sample redundancy in off-line DB while maintaining the model performance. To validate the effectiveness of the proposed method, Prognostics and Health Management (PHM) data challenge 2016 dataset is employed to predict material removal rate of chemical-mechanical planarization process. The validation results indicate that the proposed method outperforms existing state-of-art approaches in literature such as Just-in-Time (JIT) and deep learning models.
ISSN:0894-6507
1558-2345
DOI:10.1109/TSM.2019.2942768