Loading…
Machine Learning Holography for 3D Particle Field Imaging
We propose a new learning-based approach for 3D particle field imaging using holography. Our approach uses a U-net architecture incorporating residual connections, Swish activation, hologram preprocessing, and transfer learning to cope with challenges arising in particle holograms where accurate mea...
Saved in:
Published in: | arXiv.org 2019-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shao, Siyao Mallery, Kevin Kumar, Santosh Hong, Jiarong |
description | We propose a new learning-based approach for 3D particle field imaging using holography. Our approach uses a U-net architecture incorporating residual connections, Swish activation, hologram preprocessing, and transfer learning to cope with challenges arising in particle holograms where accurate measurement of individual particles is crucial. Assessments on both synthetic and experimental holograms demonstrate a significant improvement in particle extraction rate, localization accuracy and speed compared to prior methods over a wide range of particle concentrations, including highly-dense concentrations where other methods are unsuitable. Our approach can be potentially extended to other types of computational imaging tasks with similar features. |
doi_str_mv | 10.48550/arxiv.1911.00805 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2312070161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312070161</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-f675c8a1361ce251504f71a02f1fc89b5755cc8bf7c0cdedd2955d7ac24bf7a3</originalsourceid><addsrcrecordid>eNotjUFLw0AQRhdBsNT-AG8LnhNnZjPZ5CjV2kJEQe9lutlNU2JSN63ovzegpw8ej_cpdYOQZgUz3En8br9SLBFTgAL4Qs3IGEyKjOhKLcbxAACUW2I2M1U-i9u3vdeVl9i3faPXQzc0UY77Hx2GqM2DfpV4al3n9ar1Xa03H9JM4rW6DNKNfvG_c_W2enxfrpPq5WmzvK8SYcIk5JZdIWhydJ4YGbJgUYACBleUO7bMzhW7YB242tc1lcy1FUfZxMTM1e1f9RiHz7MfT9vDcI79dLglgwQWMEfzCyh8R0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312070161</pqid></control><display><type>article</type><title>Machine Learning Holography for 3D Particle Field Imaging</title><source>Publicly Available Content Database</source><creator>Shao, Siyao ; Mallery, Kevin ; Kumar, Santosh ; Hong, Jiarong</creator><creatorcontrib>Shao, Siyao ; Mallery, Kevin ; Kumar, Santosh ; Hong, Jiarong</creatorcontrib><description>We propose a new learning-based approach for 3D particle field imaging using holography. Our approach uses a U-net architecture incorporating residual connections, Swish activation, hologram preprocessing, and transfer learning to cope with challenges arising in particle holograms where accurate measurement of individual particles is crucial. Assessments on both synthetic and experimental holograms demonstrate a significant improvement in particle extraction rate, localization accuracy and speed compared to prior methods over a wide range of particle concentrations, including highly-dense concentrations where other methods are unsuitable. Our approach can be potentially extended to other types of computational imaging tasks with similar features.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1911.00805</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Holograms ; Holography ; Imaging ; Machine learning</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2312070161?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Shao, Siyao</creatorcontrib><creatorcontrib>Mallery, Kevin</creatorcontrib><creatorcontrib>Kumar, Santosh</creatorcontrib><creatorcontrib>Hong, Jiarong</creatorcontrib><title>Machine Learning Holography for 3D Particle Field Imaging</title><title>arXiv.org</title><description>We propose a new learning-based approach for 3D particle field imaging using holography. Our approach uses a U-net architecture incorporating residual connections, Swish activation, hologram preprocessing, and transfer learning to cope with challenges arising in particle holograms where accurate measurement of individual particles is crucial. Assessments on both synthetic and experimental holograms demonstrate a significant improvement in particle extraction rate, localization accuracy and speed compared to prior methods over a wide range of particle concentrations, including highly-dense concentrations where other methods are unsuitable. Our approach can be potentially extended to other types of computational imaging tasks with similar features.</description><subject>Holograms</subject><subject>Holography</subject><subject>Imaging</subject><subject>Machine learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUFLw0AQRhdBsNT-AG8LnhNnZjPZ5CjV2kJEQe9lutlNU2JSN63ovzegpw8ej_cpdYOQZgUz3En8br9SLBFTgAL4Qs3IGEyKjOhKLcbxAACUW2I2M1U-i9u3vdeVl9i3faPXQzc0UY77Hx2GqM2DfpV4al3n9ar1Xa03H9JM4rW6DNKNfvG_c_W2enxfrpPq5WmzvK8SYcIk5JZdIWhydJ4YGbJgUYACBleUO7bMzhW7YB242tc1lcy1FUfZxMTM1e1f9RiHz7MfT9vDcI79dLglgwQWMEfzCyh8R0Q</recordid><startdate>20191103</startdate><enddate>20191103</enddate><creator>Shao, Siyao</creator><creator>Mallery, Kevin</creator><creator>Kumar, Santosh</creator><creator>Hong, Jiarong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191103</creationdate><title>Machine Learning Holography for 3D Particle Field Imaging</title><author>Shao, Siyao ; Mallery, Kevin ; Kumar, Santosh ; Hong, Jiarong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-f675c8a1361ce251504f71a02f1fc89b5755cc8bf7c0cdedd2955d7ac24bf7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Holograms</topic><topic>Holography</topic><topic>Imaging</topic><topic>Machine learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Shao, Siyao</creatorcontrib><creatorcontrib>Mallery, Kevin</creatorcontrib><creatorcontrib>Kumar, Santosh</creatorcontrib><creatorcontrib>Hong, Jiarong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Siyao</au><au>Mallery, Kevin</au><au>Kumar, Santosh</au><au>Hong, Jiarong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Holography for 3D Particle Field Imaging</atitle><jtitle>arXiv.org</jtitle><date>2019-11-03</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We propose a new learning-based approach for 3D particle field imaging using holography. Our approach uses a U-net architecture incorporating residual connections, Swish activation, hologram preprocessing, and transfer learning to cope with challenges arising in particle holograms where accurate measurement of individual particles is crucial. Assessments on both synthetic and experimental holograms demonstrate a significant improvement in particle extraction rate, localization accuracy and speed compared to prior methods over a wide range of particle concentrations, including highly-dense concentrations where other methods are unsuitable. Our approach can be potentially extended to other types of computational imaging tasks with similar features.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1911.00805</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2312070161 |
source | Publicly Available Content Database |
subjects | Holograms Holography Imaging Machine learning |
title | Machine Learning Holography for 3D Particle Field Imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Holography%20for%203D%20Particle%20Field%20Imaging&rft.jtitle=arXiv.org&rft.au=Shao,%20Siyao&rft.date=2019-11-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1911.00805&rft_dat=%3Cproquest%3E2312070161%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-f675c8a1361ce251504f71a02f1fc89b5755cc8bf7c0cdedd2955d7ac24bf7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312070161&rft_id=info:pmid/&rfr_iscdi=true |