Loading…

Flexible gold nanoparticles/rGO and thin film/rGO papers: novel electrocatalysts for hydrogen evolution reaction

BACKGROUND Fabrication of cost‐effective and durable materials for efficient hydrogen production in splitting water (hydrogen evolution reaction) is of importance for the successful utilization of hydrogen‐based green energy technologies. Therefore, electrocatalytic materials have been designed with...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical technology and biotechnology (1986) 2019-12, Vol.94 (12), p.3895-3904
Main Authors: Topçu, Ezgi, Dağcı Kıranşan, Kader
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3347-8c52523e21d60851524894fe5a776cd4c6aea4fd9c9f2bce5b68f93c6803a1153
cites cdi_FETCH-LOGICAL-c3347-8c52523e21d60851524894fe5a776cd4c6aea4fd9c9f2bce5b68f93c6803a1153
container_end_page 3904
container_issue 12
container_start_page 3895
container_title Journal of chemical technology and biotechnology (1986)
container_volume 94
creator Topçu, Ezgi
Dağcı Kıranşan, Kader
description BACKGROUND Fabrication of cost‐effective and durable materials for efficient hydrogen production in splitting water (hydrogen evolution reaction) is of importance for the successful utilization of hydrogen‐based green energy technologies. Therefore, electrocatalytic materials have been designed with a simple approach using electrodeposition of gold nanoparticles (AuNPs) and thin film (AuTF) directly on reduced graphene oxide (rGO) paper. As‐prepared paper electrocatalysts (AuNPs/rGO and AuTF/rGO) were characterized by X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). RESULTS Free‐standing and flexible AuNPs/rGO and AuTF/rGO electrocatalysts have exhibited excellent performances on HER with low Tafel slopes (88 and 112 mV dec−1), low onset potentials (−47 and −55 mV), small overpotentials of only −176 and −204 mV to drive 10 mA cm−2, respectively, and high durability even with the rolled design. The outstanding performance of these two electrocatalysts can be attributed to the uniform distribution of 20‐nm‐sized AuNPs and the deposition of well‐ordered AuTF on rGO paper, providing an increment in the surface area and an enhancement of the electron density. CONCLUSION The controllable design of AuNPs/rGO and AuTF/rGO electrocatalysts, together with their high flexibility, good stability and promising results, suggest potential use in future applications of H2 production in splitting water. © 2019 Society of Chemical Industry
doi_str_mv 10.1002/jctb.6187
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2312228344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312228344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3347-8c52523e21d60851524894fe5a776cd4c6aea4fd9c9f2bce5b68f93c6803a1153</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGktZ3YcdigogVUqUuZI8c5t6lcO9hpIf-efrAy3en03PtKD0L3lIwoIWy80V01ElTmF2hASZEnmRDkEg0IEzJhPOfX6CbGDSFESCYGqJ1a-GkqC3jlbY2dcr5VoWu0hTgOswVWrsbdunHYNHZ7urSqhRCfsPN7sBgs6C54rTpl-9hFbHzA674OfgUOw97bXdd4hwMofVxu0ZVRNsLd3xyiz-nrcvKWzBez98nzPNFpmuWJ1JxxlgKjtSCSU84yWWQGuMpzoetMCwUqM3WhC8MqDbwS0hSpFpKkilKeDtHDObcN_msHsSs3fhfcobJkKWWMyTTLDtTjmdLBxxjAlG1otir0JSXlUWh5FFoehR7Y8Zn9biz0_4Plx2T5cvr4Bd8OeVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312228344</pqid></control><display><type>article</type><title>Flexible gold nanoparticles/rGO and thin film/rGO papers: novel electrocatalysts for hydrogen evolution reaction</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Topçu, Ezgi ; Dağcı Kıranşan, Kader</creator><creatorcontrib>Topçu, Ezgi ; Dağcı Kıranşan, Kader</creatorcontrib><description>BACKGROUND Fabrication of cost‐effective and durable materials for efficient hydrogen production in splitting water (hydrogen evolution reaction) is of importance for the successful utilization of hydrogen‐based green energy technologies. Therefore, electrocatalytic materials have been designed with a simple approach using electrodeposition of gold nanoparticles (AuNPs) and thin film (AuTF) directly on reduced graphene oxide (rGO) paper. As‐prepared paper electrocatalysts (AuNPs/rGO and AuTF/rGO) were characterized by X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). RESULTS Free‐standing and flexible AuNPs/rGO and AuTF/rGO electrocatalysts have exhibited excellent performances on HER with low Tafel slopes (88 and 112 mV dec−1), low onset potentials (−47 and −55 mV), small overpotentials of only −176 and −204 mV to drive 10 mA cm−2, respectively, and high durability even with the rolled design. The outstanding performance of these two electrocatalysts can be attributed to the uniform distribution of 20‐nm‐sized AuNPs and the deposition of well‐ordered AuTF on rGO paper, providing an increment in the surface area and an enhancement of the electron density. CONCLUSION The controllable design of AuNPs/rGO and AuTF/rGO electrocatalysts, together with their high flexibility, good stability and promising results, suggest potential use in future applications of H2 production in splitting water. © 2019 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.6187</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Au nanoparticles ; Au thin film ; Clean energy ; Durability ; Electrocatalysts ; Electron density ; Electrons ; Energy technology ; Fabrication ; Gold ; Graphene ; graphene‐based paper ; Hydrogen ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Hydrogen production ; Hydrogen-based energy ; Nanoparticles ; Organic chemistry ; Photoelectron spectroscopy ; Photoelectrons ; Raman spectroscopy ; Scanning electron microscopy ; Spectroscopy ; Spectrum analysis ; Splitting ; Tafel slopes ; Thin films ; X ray photoelectron spectroscopy</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2019-12, Vol.94 (12), p.3895-3904</ispartof><rights>2019 Society of Chemical Industry</rights><rights>Copyright © 2019 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3347-8c52523e21d60851524894fe5a776cd4c6aea4fd9c9f2bce5b68f93c6803a1153</citedby><cites>FETCH-LOGICAL-c3347-8c52523e21d60851524894fe5a776cd4c6aea4fd9c9f2bce5b68f93c6803a1153</cites><orcidid>0000-0003-1506-9089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Topçu, Ezgi</creatorcontrib><creatorcontrib>Dağcı Kıranşan, Kader</creatorcontrib><title>Flexible gold nanoparticles/rGO and thin film/rGO papers: novel electrocatalysts for hydrogen evolution reaction</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND Fabrication of cost‐effective and durable materials for efficient hydrogen production in splitting water (hydrogen evolution reaction) is of importance for the successful utilization of hydrogen‐based green energy technologies. Therefore, electrocatalytic materials have been designed with a simple approach using electrodeposition of gold nanoparticles (AuNPs) and thin film (AuTF) directly on reduced graphene oxide (rGO) paper. As‐prepared paper electrocatalysts (AuNPs/rGO and AuTF/rGO) were characterized by X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). RESULTS Free‐standing and flexible AuNPs/rGO and AuTF/rGO electrocatalysts have exhibited excellent performances on HER with low Tafel slopes (88 and 112 mV dec−1), low onset potentials (−47 and −55 mV), small overpotentials of only −176 and −204 mV to drive 10 mA cm−2, respectively, and high durability even with the rolled design. The outstanding performance of these two electrocatalysts can be attributed to the uniform distribution of 20‐nm‐sized AuNPs and the deposition of well‐ordered AuTF on rGO paper, providing an increment in the surface area and an enhancement of the electron density. CONCLUSION The controllable design of AuNPs/rGO and AuTF/rGO electrocatalysts, together with their high flexibility, good stability and promising results, suggest potential use in future applications of H2 production in splitting water. © 2019 Society of Chemical Industry</description><subject>Au nanoparticles</subject><subject>Au thin film</subject><subject>Clean energy</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Electron density</subject><subject>Electrons</subject><subject>Energy technology</subject><subject>Fabrication</subject><subject>Gold</subject><subject>Graphene</subject><subject>graphene‐based paper</subject><subject>Hydrogen</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Hydrogen-based energy</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Splitting</subject><subject>Tafel slopes</subject><subject>Thin films</subject><subject>X ray photoelectron spectroscopy</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqUw8A8sMTGktZ3YcdigogVUqUuZI8c5t6lcO9hpIf-efrAy3en03PtKD0L3lIwoIWy80V01ElTmF2hASZEnmRDkEg0IEzJhPOfX6CbGDSFESCYGqJ1a-GkqC3jlbY2dcr5VoWu0hTgOswVWrsbdunHYNHZ7urSqhRCfsPN7sBgs6C54rTpl-9hFbHzA674OfgUOw97bXdd4hwMofVxu0ZVRNsLd3xyiz-nrcvKWzBez98nzPNFpmuWJ1JxxlgKjtSCSU84yWWQGuMpzoetMCwUqM3WhC8MqDbwS0hSpFpKkilKeDtHDObcN_msHsSs3fhfcobJkKWWMyTTLDtTjmdLBxxjAlG1otir0JSXlUWh5FFoehR7Y8Zn9biz0_4Plx2T5cvr4Bd8OeVo</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Topçu, Ezgi</creator><creator>Dağcı Kıranşan, Kader</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-1506-9089</orcidid></search><sort><creationdate>201912</creationdate><title>Flexible gold nanoparticles/rGO and thin film/rGO papers: novel electrocatalysts for hydrogen evolution reaction</title><author>Topçu, Ezgi ; Dağcı Kıranşan, Kader</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3347-8c52523e21d60851524894fe5a776cd4c6aea4fd9c9f2bce5b68f93c6803a1153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Au nanoparticles</topic><topic>Au thin film</topic><topic>Clean energy</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Electron density</topic><topic>Electrons</topic><topic>Energy technology</topic><topic>Fabrication</topic><topic>Gold</topic><topic>Graphene</topic><topic>graphene‐based paper</topic><topic>Hydrogen</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Hydrogen-based energy</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Splitting</topic><topic>Tafel slopes</topic><topic>Thin films</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Topçu, Ezgi</creatorcontrib><creatorcontrib>Dağcı Kıranşan, Kader</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Topçu, Ezgi</au><au>Dağcı Kıranşan, Kader</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible gold nanoparticles/rGO and thin film/rGO papers: novel electrocatalysts for hydrogen evolution reaction</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2019-12</date><risdate>2019</risdate><volume>94</volume><issue>12</issue><spage>3895</spage><epage>3904</epage><pages>3895-3904</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND Fabrication of cost‐effective and durable materials for efficient hydrogen production in splitting water (hydrogen evolution reaction) is of importance for the successful utilization of hydrogen‐based green energy technologies. Therefore, electrocatalytic materials have been designed with a simple approach using electrodeposition of gold nanoparticles (AuNPs) and thin film (AuTF) directly on reduced graphene oxide (rGO) paper. As‐prepared paper electrocatalysts (AuNPs/rGO and AuTF/rGO) were characterized by X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). RESULTS Free‐standing and flexible AuNPs/rGO and AuTF/rGO electrocatalysts have exhibited excellent performances on HER with low Tafel slopes (88 and 112 mV dec−1), low onset potentials (−47 and −55 mV), small overpotentials of only −176 and −204 mV to drive 10 mA cm−2, respectively, and high durability even with the rolled design. The outstanding performance of these two electrocatalysts can be attributed to the uniform distribution of 20‐nm‐sized AuNPs and the deposition of well‐ordered AuTF on rGO paper, providing an increment in the surface area and an enhancement of the electron density. CONCLUSION The controllable design of AuNPs/rGO and AuTF/rGO electrocatalysts, together with their high flexibility, good stability and promising results, suggest potential use in future applications of H2 production in splitting water. © 2019 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.6187</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1506-9089</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2019-12, Vol.94 (12), p.3895-3904
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_journals_2312228344
source Wiley-Blackwell Read & Publish Collection
subjects Au nanoparticles
Au thin film
Clean energy
Durability
Electrocatalysts
Electron density
Electrons
Energy technology
Fabrication
Gold
Graphene
graphene‐based paper
Hydrogen
hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen production
Hydrogen-based energy
Nanoparticles
Organic chemistry
Photoelectron spectroscopy
Photoelectrons
Raman spectroscopy
Scanning electron microscopy
Spectroscopy
Spectrum analysis
Splitting
Tafel slopes
Thin films
X ray photoelectron spectroscopy
title Flexible gold nanoparticles/rGO and thin film/rGO papers: novel electrocatalysts for hydrogen evolution reaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20gold%20nanoparticles/rGO%20and%20thin%20film/rGO%20papers:%20novel%20electrocatalysts%20for%20hydrogen%20evolution%20reaction&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Top%C3%A7u,%20Ezgi&rft.date=2019-12&rft.volume=94&rft.issue=12&rft.spage=3895&rft.epage=3904&rft.pages=3895-3904&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.6187&rft_dat=%3Cproquest_cross%3E2312228344%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3347-8c52523e21d60851524894fe5a776cd4c6aea4fd9c9f2bce5b68f93c6803a1153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312228344&rft_id=info:pmid/&rfr_iscdi=true