Loading…
Quantitative gradient estimates for harmonic maps into singular spaces
In this paper, we show the Yau’s gradient estimate for harmonic maps into a metric space ( X , d X ) with curvature bounded above by a constant κ ( κ ⩾ 0) in the sense of Alexandrov. As a direct application, it gives some Liouville theorems for such harmonic maps. This extends the works of Cheng (19...
Saved in:
Published in: | Science China. Mathematics 2019-11, Vol.62 (11), p.2371-2400 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-95907c64119e778f58b526e1fd6dd6cec84e37d8d21da1eb7eed02654db6ef013 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-95907c64119e778f58b526e1fd6dd6cec84e37d8d21da1eb7eed02654db6ef013 |
container_end_page | 2400 |
container_issue | 11 |
container_start_page | 2371 |
container_title | Science China. Mathematics |
container_volume | 62 |
creator | Zhang, Hui-Chun Zhong, Xiao Zhu, Xi-Ping |
description | In this paper, we show the Yau’s gradient estimate for harmonic maps into a metric space (
X
,
d
X
) with curvature bounded above by a constant
κ
(
κ
⩾ 0) in the sense of Alexandrov. As a direct application, it gives some Liouville theorems for such harmonic maps. This extends the works of Cheng (1980) and Choi (1982) to harmonic maps into singular spaces. |
doi_str_mv | 10.1007/s11425-018-9493-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2312299680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312299680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-95907c64119e778f58b526e1fd6dd6cec84e37d8d21da1eb7eed02654db6ef013</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA52gm2c3HUYpVoSCCnkO6ma1b2t2aZAX_vSkreHIOM3N4552Zh5Br4LfAub5LAJWoGQfDbGUlgzMyA6MsK0mcl17pimlh5CVZpLTjJaTllZYzsnodfZ-77HP3hXQbfeiwzxRT7g4-Y6LtEOmHj4eh7xp68MdEuz4PNHX9dtz7SNPRN5iuyEXr9wkXv3VO3lcPb8sntn55fF7er1kjQWVma8t1oyoAi1qbtjabWiiENqgQVIONqVDqYIKA4AE3GjFwoeoqbBS2HOSc3Ey-xzh8juVKtxvG2JeVTkgQwlpleFHBpGrikFLE1h1jeSd-O-DuRMxNxFwh5k7E3MlZTDOpaPstxj_n_4d-AMYubns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312299680</pqid></control><display><type>article</type><title>Quantitative gradient estimates for harmonic maps into singular spaces</title><source>Springer Nature</source><creator>Zhang, Hui-Chun ; Zhong, Xiao ; Zhu, Xi-Ping</creator><creatorcontrib>Zhang, Hui-Chun ; Zhong, Xiao ; Zhu, Xi-Ping</creatorcontrib><description>In this paper, we show the Yau’s gradient estimate for harmonic maps into a metric space (
X
,
d
X
) with curvature bounded above by a constant
κ
(
κ
⩾ 0) in the sense of Alexandrov. As a direct application, it gives some Liouville theorems for such harmonic maps. This extends the works of Cheng (1980) and Choi (1982) to harmonic maps into singular spaces.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-018-9493-1</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Mathematics ; Mathematics and Statistics ; Metric space</subject><ispartof>Science China. Mathematics, 2019-11, Vol.62 (11), p.2371-2400</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-95907c64119e778f58b526e1fd6dd6cec84e37d8d21da1eb7eed02654db6ef013</citedby><cites>FETCH-LOGICAL-c316t-95907c64119e778f58b526e1fd6dd6cec84e37d8d21da1eb7eed02654db6ef013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Hui-Chun</creatorcontrib><creatorcontrib>Zhong, Xiao</creatorcontrib><creatorcontrib>Zhu, Xi-Ping</creatorcontrib><title>Quantitative gradient estimates for harmonic maps into singular spaces</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>In this paper, we show the Yau’s gradient estimate for harmonic maps into a metric space (
X
,
d
X
) with curvature bounded above by a constant
κ
(
κ
⩾ 0) in the sense of Alexandrov. As a direct application, it gives some Liouville theorems for such harmonic maps. This extends the works of Cheng (1980) and Choi (1982) to harmonic maps into singular spaces.</description><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWGp_gLeA52gm2c3HUYpVoSCCnkO6ma1b2t2aZAX_vSkreHIOM3N4552Zh5Br4LfAub5LAJWoGQfDbGUlgzMyA6MsK0mcl17pimlh5CVZpLTjJaTllZYzsnodfZ-77HP3hXQbfeiwzxRT7g4-Y6LtEOmHj4eh7xp68MdEuz4PNHX9dtz7SNPRN5iuyEXr9wkXv3VO3lcPb8sntn55fF7er1kjQWVma8t1oyoAi1qbtjabWiiENqgQVIONqVDqYIKA4AE3GjFwoeoqbBS2HOSc3Ey-xzh8juVKtxvG2JeVTkgQwlpleFHBpGrikFLE1h1jeSd-O-DuRMxNxFwh5k7E3MlZTDOpaPstxj_n_4d-AMYubns</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Zhang, Hui-Chun</creator><creator>Zhong, Xiao</creator><creator>Zhu, Xi-Ping</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191101</creationdate><title>Quantitative gradient estimates for harmonic maps into singular spaces</title><author>Zhang, Hui-Chun ; Zhong, Xiao ; Zhu, Xi-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-95907c64119e778f58b526e1fd6dd6cec84e37d8d21da1eb7eed02654db6ef013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hui-Chun</creatorcontrib><creatorcontrib>Zhong, Xiao</creatorcontrib><creatorcontrib>Zhu, Xi-Ping</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hui-Chun</au><au>Zhong, Xiao</au><au>Zhu, Xi-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative gradient estimates for harmonic maps into singular spaces</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>62</volume><issue>11</issue><spage>2371</spage><epage>2400</epage><pages>2371-2400</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>In this paper, we show the Yau’s gradient estimate for harmonic maps into a metric space (
X
,
d
X
) with curvature bounded above by a constant
κ
(
κ
⩾ 0) in the sense of Alexandrov. As a direct application, it gives some Liouville theorems for such harmonic maps. This extends the works of Cheng (1980) and Choi (1982) to harmonic maps into singular spaces.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-018-9493-1</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2019-11, Vol.62 (11), p.2371-2400 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_2312299680 |
source | Springer Nature |
subjects | Applications of Mathematics Mathematics Mathematics and Statistics Metric space |
title | Quantitative gradient estimates for harmonic maps into singular spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20gradient%20estimates%20for%20harmonic%20maps%20into%20singular%20spaces&rft.jtitle=Science%20China.%20Mathematics&rft.au=Zhang,%20Hui-Chun&rft.date=2019-11-01&rft.volume=62&rft.issue=11&rft.spage=2371&rft.epage=2400&rft.pages=2371-2400&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-018-9493-1&rft_dat=%3Cproquest_cross%3E2312299680%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-95907c64119e778f58b526e1fd6dd6cec84e37d8d21da1eb7eed02654db6ef013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312299680&rft_id=info:pmid/&rfr_iscdi=true |