Loading…

The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts

Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress th...

Full description

Saved in:
Bibliographic Details
Published in:Molecular and cellular biochemistry 2019-12, Vol.462 (1-2), p.173-183
Main Authors: Shah, Anureet Kaur, Yeganehjoo, Hoda
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3
cites cdi_FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3
container_end_page 183
container_issue 1-2
container_start_page 173
container_title Molecular and cellular biochemistry
container_volume 462
creator Shah, Anureet Kaur
Yeganehjoo, Hoda
description Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress that of osteoblasts. Preclinical and clinical studies suggest that mevalonate suppressors such as statins increase bone mineral density and reduce risk of bone fracture. Tocotrienols down-regulate 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway. In vivo studies have shown the bone-protective activity of tocotrienols. We hypothesize that d -δ-tocotrienol, a mevalonate suppressor, induces differentiation of murine MC3T3-E1 preosteoblasts. Alizarin staining showed that d -δ-tocotrienol (0–25 μmol/L) induced mineralized nodule formation in a concentration-dependent manner in MC3T3-E1 preosteoblasts. d -δ-Tocotrienol (0–25 μmol/L), but not d -α-tocopherol (25 μmol/L), significantly induced alkaline phosphatase activity, an indicator of preosteoblast differentiation. The expression of differentiation marker genes including BMP-2 and VEGFα was stimulated dose dependently by d -δ-tocotrienol (0–25 μmol/L). Concomitantly, Western blot analysis showed that d -δ-tocotrienol down-regulated HMG CoA reductase. d -δ-Tocotrienol (0–25 μmol/L) had no impact on the viability of MC3T3-E1 preosteoblasts following 48-h incubation, suggesting lack of cytotoxicity at these doses. Tocotrienols and other mevalonate suppressors have potential in maintaining bone health.
doi_str_mv 10.1007/s11010-019-03620-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2312457416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312457416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EoqVwARYoEmuDx47jZomq8iMVsQlry0kccJXExXZU9V6cgzNhSIEdK0uf33yjeQidA7kCQsS1ByBAMIEcE5ZRgrcHaApcMJzmkB-iKWGE4DkIMUEn3q9JpAnAMZowiHjO6RRVxatOfDDd0Kpg3S4x3UZVIbFNUuOPd1zYygZndG_bxPZJiHRtmkY73QejgolZRLvBmV4njwtWMLyEZOO09UHbslU--FN01KjW67P9O0PPt8ticY9XT3cPi5sVrpjgAYMG4CTNM06FyDXL0hgDyVKa100dM82zMl4GlHLK2Vylgjdc5FmpmFaiZjN0OfZunH0btA9ybQfXx5WSMqApFylkkaIjVTnrvdON3DjTKbeTQOSXVzl6ldGr_PYqt3HoYl89lJ2uf0d-REaAjYCPX_2Ldn-7_6n9BIIggkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312457416</pqid></control><display><type>article</type><title>The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts</title><source>Springer Nature</source><creator>Shah, Anureet Kaur ; Yeganehjoo, Hoda</creator><creatorcontrib>Shah, Anureet Kaur ; Yeganehjoo, Hoda</creatorcontrib><description>Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress that of osteoblasts. Preclinical and clinical studies suggest that mevalonate suppressors such as statins increase bone mineral density and reduce risk of bone fracture. Tocotrienols down-regulate 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway. In vivo studies have shown the bone-protective activity of tocotrienols. We hypothesize that d -δ-tocotrienol, a mevalonate suppressor, induces differentiation of murine MC3T3-E1 preosteoblasts. Alizarin staining showed that d -δ-tocotrienol (0–25 μmol/L) induced mineralized nodule formation in a concentration-dependent manner in MC3T3-E1 preosteoblasts. d -δ-Tocotrienol (0–25 μmol/L), but not d -α-tocopherol (25 μmol/L), significantly induced alkaline phosphatase activity, an indicator of preosteoblast differentiation. The expression of differentiation marker genes including BMP-2 and VEGFα was stimulated dose dependently by d -δ-tocotrienol (0–25 μmol/L). Concomitantly, Western blot analysis showed that d -δ-tocotrienol down-regulated HMG CoA reductase. d -δ-Tocotrienol (0–25 μmol/L) had no impact on the viability of MC3T3-E1 preosteoblasts following 48-h incubation, suggesting lack of cytotoxicity at these doses. Tocotrienols and other mevalonate suppressors have potential in maintaining bone health.</description><identifier>ISSN: 0300-8177</identifier><identifier>EISSN: 1573-4919</identifier><identifier>DOI: 10.1007/s11010-019-03620-w</identifier><identifier>PMID: 31620952</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alizarin ; Alkaline phosphatase ; Alkaline Phosphatase - metabolism ; Animals ; Biochemistry ; Biocompatibility ; Biomedical and Life Sciences ; Biomedical materials ; Bone mineral density ; Bone morphogenetic protein 2 ; Bone turnover ; Cardiology ; Cell Differentiation - drug effects ; Cell Line ; Coenzyme A ; Cytotoxicity ; Differentiation ; Down-Regulation - drug effects ; Gene expression ; Homeostasis ; Hydroxymethylglutaryl CoA Reductases - metabolism ; Hydroxymethylglutaryl-CoA reductase ; In vivo methods and tests ; Life Sciences ; Medical Biochemistry ; Mevalonate pathway ; Mevalonic acid ; Mevalonic Acid - metabolism ; Mice ; Oncology ; Osteoblastogenesis ; Osteoblasts ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteoclastogenesis ; Osteoclasts ; Osteogenesis - drug effects ; Pyrophosphates ; ras Proteins - metabolism ; Reductases ; Risk management ; Risk reduction ; Statins ; Suppressors ; Tocopherol ; Toxicity ; Viability ; Vitamin E ; Vitamin E - analogs &amp; derivatives ; Vitamin E - pharmacology</subject><ispartof>Molecular and cellular biochemistry, 2019-12, Vol.462 (1-2), p.173-183</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Molecular and Cellular Biochemistry is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3</citedby><cites>FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3</cites><orcidid>0000-0003-1765-0942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31620952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Anureet Kaur</creatorcontrib><creatorcontrib>Yeganehjoo, Hoda</creatorcontrib><title>The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts</title><title>Molecular and cellular biochemistry</title><addtitle>Mol Cell Biochem</addtitle><addtitle>Mol Cell Biochem</addtitle><description>Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress that of osteoblasts. Preclinical and clinical studies suggest that mevalonate suppressors such as statins increase bone mineral density and reduce risk of bone fracture. Tocotrienols down-regulate 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway. In vivo studies have shown the bone-protective activity of tocotrienols. We hypothesize that d -δ-tocotrienol, a mevalonate suppressor, induces differentiation of murine MC3T3-E1 preosteoblasts. Alizarin staining showed that d -δ-tocotrienol (0–25 μmol/L) induced mineralized nodule formation in a concentration-dependent manner in MC3T3-E1 preosteoblasts. d -δ-Tocotrienol (0–25 μmol/L), but not d -α-tocopherol (25 μmol/L), significantly induced alkaline phosphatase activity, an indicator of preosteoblast differentiation. The expression of differentiation marker genes including BMP-2 and VEGFα was stimulated dose dependently by d -δ-tocotrienol (0–25 μmol/L). Concomitantly, Western blot analysis showed that d -δ-tocotrienol down-regulated HMG CoA reductase. d -δ-Tocotrienol (0–25 μmol/L) had no impact on the viability of MC3T3-E1 preosteoblasts following 48-h incubation, suggesting lack of cytotoxicity at these doses. Tocotrienols and other mevalonate suppressors have potential in maintaining bone health.</description><subject>Alizarin</subject><subject>Alkaline phosphatase</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical materials</subject><subject>Bone mineral density</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone turnover</subject><subject>Cardiology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Line</subject><subject>Coenzyme A</subject><subject>Cytotoxicity</subject><subject>Differentiation</subject><subject>Down-Regulation - drug effects</subject><subject>Gene expression</subject><subject>Homeostasis</subject><subject>Hydroxymethylglutaryl CoA Reductases - metabolism</subject><subject>Hydroxymethylglutaryl-CoA reductase</subject><subject>In vivo methods and tests</subject><subject>Life Sciences</subject><subject>Medical Biochemistry</subject><subject>Mevalonate pathway</subject><subject>Mevalonic acid</subject><subject>Mevalonic Acid - metabolism</subject><subject>Mice</subject><subject>Oncology</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteogenesis - drug effects</subject><subject>Pyrophosphates</subject><subject>ras Proteins - metabolism</subject><subject>Reductases</subject><subject>Risk management</subject><subject>Risk reduction</subject><subject>Statins</subject><subject>Suppressors</subject><subject>Tocopherol</subject><subject>Toxicity</subject><subject>Viability</subject><subject>Vitamin E</subject><subject>Vitamin E - analogs &amp; derivatives</subject><subject>Vitamin E - pharmacology</subject><issn>0300-8177</issn><issn>1573-4919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EoqVwARYoEmuDx47jZomq8iMVsQlry0kccJXExXZU9V6cgzNhSIEdK0uf33yjeQidA7kCQsS1ByBAMIEcE5ZRgrcHaApcMJzmkB-iKWGE4DkIMUEn3q9JpAnAMZowiHjO6RRVxatOfDDd0Kpg3S4x3UZVIbFNUuOPd1zYygZndG_bxPZJiHRtmkY73QejgolZRLvBmV4njwtWMLyEZOO09UHbslU--FN01KjW67P9O0PPt8ticY9XT3cPi5sVrpjgAYMG4CTNM06FyDXL0hgDyVKa100dM82zMl4GlHLK2Vylgjdc5FmpmFaiZjN0OfZunH0btA9ybQfXx5WSMqApFylkkaIjVTnrvdON3DjTKbeTQOSXVzl6ldGr_PYqt3HoYl89lJ2uf0d-REaAjYCPX_2Ldn-7_6n9BIIggkk</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Shah, Anureet Kaur</creator><creator>Yeganehjoo, Hoda</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-1765-0942</orcidid></search><sort><creationdate>20191201</creationdate><title>The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts</title><author>Shah, Anureet Kaur ; Yeganehjoo, Hoda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alizarin</topic><topic>Alkaline phosphatase</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical materials</topic><topic>Bone mineral density</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone turnover</topic><topic>Cardiology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Line</topic><topic>Coenzyme A</topic><topic>Cytotoxicity</topic><topic>Differentiation</topic><topic>Down-Regulation - drug effects</topic><topic>Gene expression</topic><topic>Homeostasis</topic><topic>Hydroxymethylglutaryl CoA Reductases - metabolism</topic><topic>Hydroxymethylglutaryl-CoA reductase</topic><topic>In vivo methods and tests</topic><topic>Life Sciences</topic><topic>Medical Biochemistry</topic><topic>Mevalonate pathway</topic><topic>Mevalonic acid</topic><topic>Mevalonic Acid - metabolism</topic><topic>Mice</topic><topic>Oncology</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteogenesis - drug effects</topic><topic>Pyrophosphates</topic><topic>ras Proteins - metabolism</topic><topic>Reductases</topic><topic>Risk management</topic><topic>Risk reduction</topic><topic>Statins</topic><topic>Suppressors</topic><topic>Tocopherol</topic><topic>Toxicity</topic><topic>Viability</topic><topic>Vitamin E</topic><topic>Vitamin E - analogs &amp; derivatives</topic><topic>Vitamin E - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Anureet Kaur</creatorcontrib><creatorcontrib>Yeganehjoo, Hoda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Molecular and cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Anureet Kaur</au><au>Yeganehjoo, Hoda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts</atitle><jtitle>Molecular and cellular biochemistry</jtitle><stitle>Mol Cell Biochem</stitle><addtitle>Mol Cell Biochem</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>462</volume><issue>1-2</issue><spage>173</spage><epage>183</epage><pages>173-183</pages><issn>0300-8177</issn><eissn>1573-4919</eissn><abstract>Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress that of osteoblasts. Preclinical and clinical studies suggest that mevalonate suppressors such as statins increase bone mineral density and reduce risk of bone fracture. Tocotrienols down-regulate 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway. In vivo studies have shown the bone-protective activity of tocotrienols. We hypothesize that d -δ-tocotrienol, a mevalonate suppressor, induces differentiation of murine MC3T3-E1 preosteoblasts. Alizarin staining showed that d -δ-tocotrienol (0–25 μmol/L) induced mineralized nodule formation in a concentration-dependent manner in MC3T3-E1 preosteoblasts. d -δ-Tocotrienol (0–25 μmol/L), but not d -α-tocopherol (25 μmol/L), significantly induced alkaline phosphatase activity, an indicator of preosteoblast differentiation. The expression of differentiation marker genes including BMP-2 and VEGFα was stimulated dose dependently by d -δ-tocotrienol (0–25 μmol/L). Concomitantly, Western blot analysis showed that d -δ-tocotrienol down-regulated HMG CoA reductase. d -δ-Tocotrienol (0–25 μmol/L) had no impact on the viability of MC3T3-E1 preosteoblasts following 48-h incubation, suggesting lack of cytotoxicity at these doses. Tocotrienols and other mevalonate suppressors have potential in maintaining bone health.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31620952</pmid><doi>10.1007/s11010-019-03620-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1765-0942</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0300-8177
ispartof Molecular and cellular biochemistry, 2019-12, Vol.462 (1-2), p.173-183
issn 0300-8177
1573-4919
language eng
recordid cdi_proquest_journals_2312457416
source Springer Nature
subjects Alizarin
Alkaline phosphatase
Alkaline Phosphatase - metabolism
Animals
Biochemistry
Biocompatibility
Biomedical and Life Sciences
Biomedical materials
Bone mineral density
Bone morphogenetic protein 2
Bone turnover
Cardiology
Cell Differentiation - drug effects
Cell Line
Coenzyme A
Cytotoxicity
Differentiation
Down-Regulation - drug effects
Gene expression
Homeostasis
Hydroxymethylglutaryl CoA Reductases - metabolism
Hydroxymethylglutaryl-CoA reductase
In vivo methods and tests
Life Sciences
Medical Biochemistry
Mevalonate pathway
Mevalonic acid
Mevalonic Acid - metabolism
Mice
Oncology
Osteoblastogenesis
Osteoblasts
Osteoblasts - cytology
Osteoblasts - drug effects
Osteoblasts - metabolism
Osteoclastogenesis
Osteoclasts
Osteogenesis - drug effects
Pyrophosphates
ras Proteins - metabolism
Reductases
Risk management
Risk reduction
Statins
Suppressors
Tocopherol
Toxicity
Viability
Vitamin E
Vitamin E - analogs & derivatives
Vitamin E - pharmacology
title The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stimulatory%20impact%20of%20d-%CE%B4-Tocotrienol%20on%20the%20differentiation%20of%20murine%20MC3T3-E1%20preosteoblasts&rft.jtitle=Molecular%20and%20cellular%20biochemistry&rft.au=Shah,%20Anureet%20Kaur&rft.date=2019-12-01&rft.volume=462&rft.issue=1-2&rft.spage=173&rft.epage=183&rft.pages=173-183&rft.issn=0300-8177&rft.eissn=1573-4919&rft_id=info:doi/10.1007/s11010-019-03620-w&rft_dat=%3Cproquest_cross%3E2312457416%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312457416&rft_id=info:pmid/31620952&rfr_iscdi=true