Loading…
The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts
Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress th...
Saved in:
Published in: | Molecular and cellular biochemistry 2019-12, Vol.462 (1-2), p.173-183 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3 |
container_end_page | 183 |
container_issue | 1-2 |
container_start_page | 173 |
container_title | Molecular and cellular biochemistry |
container_volume | 462 |
creator | Shah, Anureet Kaur Yeganehjoo, Hoda |
description | Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress that of osteoblasts. Preclinical and clinical studies suggest that mevalonate suppressors such as statins increase bone mineral density and reduce risk of bone fracture. Tocotrienols down-regulate 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway. In vivo studies have shown the bone-protective activity of tocotrienols. We hypothesize that
d
-δ-tocotrienol, a mevalonate suppressor, induces differentiation of murine MC3T3-E1 preosteoblasts. Alizarin staining showed that
d
-δ-tocotrienol (0–25 μmol/L) induced mineralized nodule formation in a concentration-dependent manner in MC3T3-E1 preosteoblasts.
d
-δ-Tocotrienol (0–25 μmol/L), but not
d
-α-tocopherol (25 μmol/L), significantly induced alkaline phosphatase activity, an indicator of preosteoblast differentiation. The expression of differentiation marker genes including BMP-2 and VEGFα was stimulated dose dependently by
d
-δ-tocotrienol (0–25 μmol/L). Concomitantly, Western blot analysis showed that
d
-δ-tocotrienol down-regulated HMG CoA reductase.
d
-δ-Tocotrienol (0–25 μmol/L) had no impact on the viability of MC3T3-E1 preosteoblasts following 48-h incubation, suggesting lack of cytotoxicity at these doses. Tocotrienols and other mevalonate suppressors have potential in maintaining bone health. |
doi_str_mv | 10.1007/s11010-019-03620-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2312457416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2312457416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EoqVwARYoEmuDx47jZomq8iMVsQlry0kccJXExXZU9V6cgzNhSIEdK0uf33yjeQidA7kCQsS1ByBAMIEcE5ZRgrcHaApcMJzmkB-iKWGE4DkIMUEn3q9JpAnAMZowiHjO6RRVxatOfDDd0Kpg3S4x3UZVIbFNUuOPd1zYygZndG_bxPZJiHRtmkY73QejgolZRLvBmV4njwtWMLyEZOO09UHbslU--FN01KjW67P9O0PPt8ticY9XT3cPi5sVrpjgAYMG4CTNM06FyDXL0hgDyVKa100dM82zMl4GlHLK2Vylgjdc5FmpmFaiZjN0OfZunH0btA9ybQfXx5WSMqApFylkkaIjVTnrvdON3DjTKbeTQOSXVzl6ldGr_PYqt3HoYl89lJ2uf0d-REaAjYCPX_2Ldn-7_6n9BIIggkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312457416</pqid></control><display><type>article</type><title>The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts</title><source>Springer Nature</source><creator>Shah, Anureet Kaur ; Yeganehjoo, Hoda</creator><creatorcontrib>Shah, Anureet Kaur ; Yeganehjoo, Hoda</creatorcontrib><description>Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress that of osteoblasts. Preclinical and clinical studies suggest that mevalonate suppressors such as statins increase bone mineral density and reduce risk of bone fracture. Tocotrienols down-regulate 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway. In vivo studies have shown the bone-protective activity of tocotrienols. We hypothesize that
d
-δ-tocotrienol, a mevalonate suppressor, induces differentiation of murine MC3T3-E1 preosteoblasts. Alizarin staining showed that
d
-δ-tocotrienol (0–25 μmol/L) induced mineralized nodule formation in a concentration-dependent manner in MC3T3-E1 preosteoblasts.
d
-δ-Tocotrienol (0–25 μmol/L), but not
d
-α-tocopherol (25 μmol/L), significantly induced alkaline phosphatase activity, an indicator of preosteoblast differentiation. The expression of differentiation marker genes including BMP-2 and VEGFα was stimulated dose dependently by
d
-δ-tocotrienol (0–25 μmol/L). Concomitantly, Western blot analysis showed that
d
-δ-tocotrienol down-regulated HMG CoA reductase.
d
-δ-Tocotrienol (0–25 μmol/L) had no impact on the viability of MC3T3-E1 preosteoblasts following 48-h incubation, suggesting lack of cytotoxicity at these doses. Tocotrienols and other mevalonate suppressors have potential in maintaining bone health.</description><identifier>ISSN: 0300-8177</identifier><identifier>EISSN: 1573-4919</identifier><identifier>DOI: 10.1007/s11010-019-03620-w</identifier><identifier>PMID: 31620952</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alizarin ; Alkaline phosphatase ; Alkaline Phosphatase - metabolism ; Animals ; Biochemistry ; Biocompatibility ; Biomedical and Life Sciences ; Biomedical materials ; Bone mineral density ; Bone morphogenetic protein 2 ; Bone turnover ; Cardiology ; Cell Differentiation - drug effects ; Cell Line ; Coenzyme A ; Cytotoxicity ; Differentiation ; Down-Regulation - drug effects ; Gene expression ; Homeostasis ; Hydroxymethylglutaryl CoA Reductases - metabolism ; Hydroxymethylglutaryl-CoA reductase ; In vivo methods and tests ; Life Sciences ; Medical Biochemistry ; Mevalonate pathway ; Mevalonic acid ; Mevalonic Acid - metabolism ; Mice ; Oncology ; Osteoblastogenesis ; Osteoblasts ; Osteoblasts - cytology ; Osteoblasts - drug effects ; Osteoblasts - metabolism ; Osteoclastogenesis ; Osteoclasts ; Osteogenesis - drug effects ; Pyrophosphates ; ras Proteins - metabolism ; Reductases ; Risk management ; Risk reduction ; Statins ; Suppressors ; Tocopherol ; Toxicity ; Viability ; Vitamin E ; Vitamin E - analogs & derivatives ; Vitamin E - pharmacology</subject><ispartof>Molecular and cellular biochemistry, 2019-12, Vol.462 (1-2), p.173-183</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Molecular and Cellular Biochemistry is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3</citedby><cites>FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3</cites><orcidid>0000-0003-1765-0942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31620952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shah, Anureet Kaur</creatorcontrib><creatorcontrib>Yeganehjoo, Hoda</creatorcontrib><title>The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts</title><title>Molecular and cellular biochemistry</title><addtitle>Mol Cell Biochem</addtitle><addtitle>Mol Cell Biochem</addtitle><description>Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress that of osteoblasts. Preclinical and clinical studies suggest that mevalonate suppressors such as statins increase bone mineral density and reduce risk of bone fracture. Tocotrienols down-regulate 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway. In vivo studies have shown the bone-protective activity of tocotrienols. We hypothesize that
d
-δ-tocotrienol, a mevalonate suppressor, induces differentiation of murine MC3T3-E1 preosteoblasts. Alizarin staining showed that
d
-δ-tocotrienol (0–25 μmol/L) induced mineralized nodule formation in a concentration-dependent manner in MC3T3-E1 preosteoblasts.
d
-δ-Tocotrienol (0–25 μmol/L), but not
d
-α-tocopherol (25 μmol/L), significantly induced alkaline phosphatase activity, an indicator of preosteoblast differentiation. The expression of differentiation marker genes including BMP-2 and VEGFα was stimulated dose dependently by
d
-δ-tocotrienol (0–25 μmol/L). Concomitantly, Western blot analysis showed that
d
-δ-tocotrienol down-regulated HMG CoA reductase.
d
-δ-Tocotrienol (0–25 μmol/L) had no impact on the viability of MC3T3-E1 preosteoblasts following 48-h incubation, suggesting lack of cytotoxicity at these doses. Tocotrienols and other mevalonate suppressors have potential in maintaining bone health.</description><subject>Alizarin</subject><subject>Alkaline phosphatase</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical materials</subject><subject>Bone mineral density</subject><subject>Bone morphogenetic protein 2</subject><subject>Bone turnover</subject><subject>Cardiology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Line</subject><subject>Coenzyme A</subject><subject>Cytotoxicity</subject><subject>Differentiation</subject><subject>Down-Regulation - drug effects</subject><subject>Gene expression</subject><subject>Homeostasis</subject><subject>Hydroxymethylglutaryl CoA Reductases - metabolism</subject><subject>Hydroxymethylglutaryl-CoA reductase</subject><subject>In vivo methods and tests</subject><subject>Life Sciences</subject><subject>Medical Biochemistry</subject><subject>Mevalonate pathway</subject><subject>Mevalonic acid</subject><subject>Mevalonic Acid - metabolism</subject><subject>Mice</subject><subject>Oncology</subject><subject>Osteoblastogenesis</subject><subject>Osteoblasts</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoclastogenesis</subject><subject>Osteoclasts</subject><subject>Osteogenesis - drug effects</subject><subject>Pyrophosphates</subject><subject>ras Proteins - metabolism</subject><subject>Reductases</subject><subject>Risk management</subject><subject>Risk reduction</subject><subject>Statins</subject><subject>Suppressors</subject><subject>Tocopherol</subject><subject>Toxicity</subject><subject>Viability</subject><subject>Vitamin E</subject><subject>Vitamin E - analogs & derivatives</subject><subject>Vitamin E - pharmacology</subject><issn>0300-8177</issn><issn>1573-4919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EoqVwARYoEmuDx47jZomq8iMVsQlry0kccJXExXZU9V6cgzNhSIEdK0uf33yjeQidA7kCQsS1ByBAMIEcE5ZRgrcHaApcMJzmkB-iKWGE4DkIMUEn3q9JpAnAMZowiHjO6RRVxatOfDDd0Kpg3S4x3UZVIbFNUuOPd1zYygZndG_bxPZJiHRtmkY73QejgolZRLvBmV4njwtWMLyEZOO09UHbslU--FN01KjW67P9O0PPt8ticY9XT3cPi5sVrpjgAYMG4CTNM06FyDXL0hgDyVKa100dM82zMl4GlHLK2Vylgjdc5FmpmFaiZjN0OfZunH0btA9ybQfXx5WSMqApFylkkaIjVTnrvdON3DjTKbeTQOSXVzl6ldGr_PYqt3HoYl89lJ2uf0d-REaAjYCPX_2Ldn-7_6n9BIIggkk</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Shah, Anureet Kaur</creator><creator>Yeganehjoo, Hoda</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-1765-0942</orcidid></search><sort><creationdate>20191201</creationdate><title>The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts</title><author>Shah, Anureet Kaur ; Yeganehjoo, Hoda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alizarin</topic><topic>Alkaline phosphatase</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical materials</topic><topic>Bone mineral density</topic><topic>Bone morphogenetic protein 2</topic><topic>Bone turnover</topic><topic>Cardiology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Line</topic><topic>Coenzyme A</topic><topic>Cytotoxicity</topic><topic>Differentiation</topic><topic>Down-Regulation - drug effects</topic><topic>Gene expression</topic><topic>Homeostasis</topic><topic>Hydroxymethylglutaryl CoA Reductases - metabolism</topic><topic>Hydroxymethylglutaryl-CoA reductase</topic><topic>In vivo methods and tests</topic><topic>Life Sciences</topic><topic>Medical Biochemistry</topic><topic>Mevalonate pathway</topic><topic>Mevalonic acid</topic><topic>Mevalonic Acid - metabolism</topic><topic>Mice</topic><topic>Oncology</topic><topic>Osteoblastogenesis</topic><topic>Osteoblasts</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoclastogenesis</topic><topic>Osteoclasts</topic><topic>Osteogenesis - drug effects</topic><topic>Pyrophosphates</topic><topic>ras Proteins - metabolism</topic><topic>Reductases</topic><topic>Risk management</topic><topic>Risk reduction</topic><topic>Statins</topic><topic>Suppressors</topic><topic>Tocopherol</topic><topic>Toxicity</topic><topic>Viability</topic><topic>Vitamin E</topic><topic>Vitamin E - analogs & derivatives</topic><topic>Vitamin E - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Anureet Kaur</creatorcontrib><creatorcontrib>Yeganehjoo, Hoda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Molecular and cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Anureet Kaur</au><au>Yeganehjoo, Hoda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts</atitle><jtitle>Molecular and cellular biochemistry</jtitle><stitle>Mol Cell Biochem</stitle><addtitle>Mol Cell Biochem</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>462</volume><issue>1-2</issue><spage>173</spage><epage>183</epage><pages>173-183</pages><issn>0300-8177</issn><eissn>1573-4919</eissn><abstract>Osteoblasts and osteoclasts play essential and opposite roles in maintaining bone homeostasis. Osteoblasts fill cavities excavated by osteoclasts. The mevalonate pathway provides essential prenyl pyrophosphates for the activities of GTPases that promote differentiation of osteoclasts but suppress that of osteoblasts. Preclinical and clinical studies suggest that mevalonate suppressors such as statins increase bone mineral density and reduce risk of bone fracture. Tocotrienols down-regulate 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, the rate-limiting enzyme in the mevalonate pathway. In vivo studies have shown the bone-protective activity of tocotrienols. We hypothesize that
d
-δ-tocotrienol, a mevalonate suppressor, induces differentiation of murine MC3T3-E1 preosteoblasts. Alizarin staining showed that
d
-δ-tocotrienol (0–25 μmol/L) induced mineralized nodule formation in a concentration-dependent manner in MC3T3-E1 preosteoblasts.
d
-δ-Tocotrienol (0–25 μmol/L), but not
d
-α-tocopherol (25 μmol/L), significantly induced alkaline phosphatase activity, an indicator of preosteoblast differentiation. The expression of differentiation marker genes including BMP-2 and VEGFα was stimulated dose dependently by
d
-δ-tocotrienol (0–25 μmol/L). Concomitantly, Western blot analysis showed that
d
-δ-tocotrienol down-regulated HMG CoA reductase.
d
-δ-Tocotrienol (0–25 μmol/L) had no impact on the viability of MC3T3-E1 preosteoblasts following 48-h incubation, suggesting lack of cytotoxicity at these doses. Tocotrienols and other mevalonate suppressors have potential in maintaining bone health.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31620952</pmid><doi>10.1007/s11010-019-03620-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1765-0942</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0300-8177 |
ispartof | Molecular and cellular biochemistry, 2019-12, Vol.462 (1-2), p.173-183 |
issn | 0300-8177 1573-4919 |
language | eng |
recordid | cdi_proquest_journals_2312457416 |
source | Springer Nature |
subjects | Alizarin Alkaline phosphatase Alkaline Phosphatase - metabolism Animals Biochemistry Biocompatibility Biomedical and Life Sciences Biomedical materials Bone mineral density Bone morphogenetic protein 2 Bone turnover Cardiology Cell Differentiation - drug effects Cell Line Coenzyme A Cytotoxicity Differentiation Down-Regulation - drug effects Gene expression Homeostasis Hydroxymethylglutaryl CoA Reductases - metabolism Hydroxymethylglutaryl-CoA reductase In vivo methods and tests Life Sciences Medical Biochemistry Mevalonate pathway Mevalonic acid Mevalonic Acid - metabolism Mice Oncology Osteoblastogenesis Osteoblasts Osteoblasts - cytology Osteoblasts - drug effects Osteoblasts - metabolism Osteoclastogenesis Osteoclasts Osteogenesis - drug effects Pyrophosphates ras Proteins - metabolism Reductases Risk management Risk reduction Statins Suppressors Tocopherol Toxicity Viability Vitamin E Vitamin E - analogs & derivatives Vitamin E - pharmacology |
title | The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20stimulatory%20impact%20of%20d-%CE%B4-Tocotrienol%20on%20the%20differentiation%20of%20murine%20MC3T3-E1%20preosteoblasts&rft.jtitle=Molecular%20and%20cellular%20biochemistry&rft.au=Shah,%20Anureet%20Kaur&rft.date=2019-12-01&rft.volume=462&rft.issue=1-2&rft.spage=173&rft.epage=183&rft.pages=173-183&rft.issn=0300-8177&rft.eissn=1573-4919&rft_id=info:doi/10.1007/s11010-019-03620-w&rft_dat=%3Cproquest_cross%3E2312457416%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-1e115049652779e364375106429dfd277e56b49112252538a475f5796ba3ea7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312457416&rft_id=info:pmid/31620952&rfr_iscdi=true |