Loading…

An energy-resolved atomic scanning probe

We propose a method to probe the local density of states (LDOS) of atomic systems that provides both spatial and energy resolution. The method combines atomic and tunneling techniques to supply a simple, yet quantitative and operational, definition of the LDOS for both interacting and non-interactin...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2018-11, Vol.20 (11), p.115005
Main Authors: Gruss, Daniel, Chien, Chih-Chun, Barreiro, Julio T, Di Ventra, Massimiliano, Zwolak, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a method to probe the local density of states (LDOS) of atomic systems that provides both spatial and energy resolution. The method combines atomic and tunneling techniques to supply a simple, yet quantitative and operational, definition of the LDOS for both interacting and non-interacting systems: it is the rate at which particles can be siphoned from the system of interest by a narrow energy band of non-interacting states contacted locally to the many-body system of interest. Ultracold atoms in optical lattices are a natural platform for implementing this broad concept to visualize the energy and spatial dependence of the atom density in interacting, inhomogeneous lattices. This includes models of strongly correlated condensed matter systems, as well as ones with non-trivial topologies.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/aaedcf