Loading…

High-Specific Impulse Hall Thrusters, Part 1: Influence of Current Density and Magnetic Field

A laboratory-model Hall thruster with a magnetic circuit designed for high-specific impulse (2000-3000 s) was evaluated to determine how current density and magnetic field affect thruster operation. Results have shown for the first time that a minimum current density and optimum magnetic field shape...

Full description

Saved in:
Bibliographic Details
Published in:Journal of propulsion and power 2006-07, Vol.22 (4), p.721-731
Main Authors: Hofer, Richard R, Jankovsky, Robert S, Gallimore, Alec D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A laboratory-model Hall thruster with a magnetic circuit designed for high-specific impulse (2000-3000 s) was evaluated to determine how current density and magnetic field affect thruster operation. Results have shown for the first time that a minimum current density and optimum magnetic field shape exist at which efficiency will monotonically increase with specific impulse. At the nominal mass flow rate of 10 mg/s and between discharge voltages of 300 and 1000 V, total specific impulse and total efficiency ranged from 1600 to 3400 s and 51 to 61%, respectively. Comparison with a similar thruster showed how efficiency can be optimized for specific impulse by varying the shape of the magnetic field. Plume divergence decreased from a maximum of 48 deg at 400 V to a minimum of 35 deg at 1000 V, but increased between 300 and 400 V as the likely result of a large increase in discharge current oscillations. The breathing-mode frequency continuously increased with voltage, from 14.5 kHz at 300 V to 22 kHz at 1000 V, in contrast to other Hall thrusters where a sharp decrease of the breathing-mode frequency was found to coincide with increasing electron current and decreasing efficiency. These findings suggest that efficient, high-specific impulse operation was enabled through the regulation of the electron current with the applied magnetic field.
ISSN:0748-4658
1533-3876
DOI:10.2514/1.15952