Loading…
Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders
In this paper, a delayed fractional eco-epidemiological model with incommensurate orders is proposed, and a control strategy of this model is discussed. Firstly, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Secondly, under the inf...
Saved in:
Published in: | Journal of the Franklin Institute 2019-10, Vol.356 (15), p.8278-8295 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53 |
container_end_page | 8295 |
container_issue | 15 |
container_start_page | 8278 |
container_title | Journal of the Franklin Institute |
container_volume | 356 |
creator | Wang, Xinhe Wang, Zhen Xia, Jianwei |
description | In this paper, a delayed fractional eco-epidemiological model with incommensurate orders is proposed, and a control strategy of this model is discussed. Firstly, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Secondly, under the influence of the controller, the stability and Hopf bifurcation of the system is discussed, and it is indicated that the stability of the system can be changed by increasing the feedback control delay. In particular, a separate study is carried out on the bifurcation with respect to the extended feedback delay, and the bifurcation point is calculated. At last, to support the theoretical results, some numerical simulations are depicted. |
doi_str_mv | 10.1016/j.jfranklin.2019.07.028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313059724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003219305502</els_id><sourcerecordid>2313059724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53</originalsourceid><addsrcrecordid>eNqFkE1PxCAQhonRxHX1N0jiuRVKC-3RGL-STTyoZ0JhUGpbVmA1--9lXePVzGEymfedjwehc0pKSii_HMrBBjW_j24uK0K7koiSVO0BWtBWdEXFO3aIFiRLC0JYdYxOYhxyKSghC5Sekurd6NIWq9ng3tlN0Co5P2Pt5xT8iL3FChsY1RYMzqv0rqvGwgcDAYP2Baydgcn50b86rUY8-SzHXy69YTdrP00wx01QCfCPJ56iI6vGCGe_eYlebm-er--L1ePdw_XVqtCsZqnQDbV9x1orLKFVw4wVNW8oZ8A5o3WXw3a9bg0XNWGMg2k7C7blfU8aoxq2RBf7uevgPzYQkxz8JuTbo6wYZaTpRFVnldirdPAxBrByHdykwlZSIneI5SD_EMsdYkmEzIiz82rvhPzEp4Mgo3YwazAugE7SePfvjG9Uw4t4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313059724</pqid></control><display><type>article</type><title>Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders</title><source>ScienceDirect: Mathematics Backfile</source><source>ScienceDirect Freedom Collection</source><creator>Wang, Xinhe ; Wang, Zhen ; Xia, Jianwei</creator><creatorcontrib>Wang, Xinhe ; Wang, Zhen ; Xia, Jianwei</creatorcontrib><description>In this paper, a delayed fractional eco-epidemiological model with incommensurate orders is proposed, and a control strategy of this model is discussed. Firstly, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Secondly, under the influence of the controller, the stability and Hopf bifurcation of the system is discussed, and it is indicated that the stability of the system can be changed by increasing the feedback control delay. In particular, a separate study is carried out on the bifurcation with respect to the extended feedback delay, and the bifurcation point is calculated. At last, to support the theoretical results, some numerical simulations are depicted.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2019.07.028</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Bifurcation theory ; Computer simulation ; Control stability ; Controllers ; Epidemiology ; Feedback control ; Feedback control systems ; Hopf bifurcation ; Mathematical models ; Numerical analysis ; Systems stability ; Time lag</subject><ispartof>Journal of the Franklin Institute, 2019-10, Vol.356 (15), p.8278-8295</ispartof><rights>2019 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53</citedby><cites>FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53</cites><orcidid>0000-0001-7188-5828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016003219305502$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3562,27922,27923,46001</link.rule.ids></links><search><creatorcontrib>Wang, Xinhe</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Xia, Jianwei</creatorcontrib><title>Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders</title><title>Journal of the Franklin Institute</title><description>In this paper, a delayed fractional eco-epidemiological model with incommensurate orders is proposed, and a control strategy of this model is discussed. Firstly, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Secondly, under the influence of the controller, the stability and Hopf bifurcation of the system is discussed, and it is indicated that the stability of the system can be changed by increasing the feedback control delay. In particular, a separate study is carried out on the bifurcation with respect to the extended feedback delay, and the bifurcation point is calculated. At last, to support the theoretical results, some numerical simulations are depicted.</description><subject>Bifurcation theory</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Epidemiology</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Hopf bifurcation</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Systems stability</subject><subject>Time lag</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PxCAQhonRxHX1N0jiuRVKC-3RGL-STTyoZ0JhUGpbVmA1--9lXePVzGEymfedjwehc0pKSii_HMrBBjW_j24uK0K7koiSVO0BWtBWdEXFO3aIFiRLC0JYdYxOYhxyKSghC5Sekurd6NIWq9ng3tlN0Co5P2Pt5xT8iL3FChsY1RYMzqv0rqvGwgcDAYP2Baydgcn50b86rUY8-SzHXy69YTdrP00wx01QCfCPJ56iI6vGCGe_eYlebm-er--L1ePdw_XVqtCsZqnQDbV9x1orLKFVw4wVNW8oZ8A5o3WXw3a9bg0XNWGMg2k7C7blfU8aoxq2RBf7uevgPzYQkxz8JuTbo6wYZaTpRFVnldirdPAxBrByHdykwlZSIneI5SD_EMsdYkmEzIiz82rvhPzEp4Mgo3YwazAugE7SePfvjG9Uw4t4</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Wang, Xinhe</creator><creator>Wang, Zhen</creator><creator>Xia, Jianwei</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-7188-5828</orcidid></search><sort><creationdate>201910</creationdate><title>Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders</title><author>Wang, Xinhe ; Wang, Zhen ; Xia, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bifurcation theory</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Epidemiology</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Hopf bifurcation</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Systems stability</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinhe</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Xia, Jianwei</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinhe</au><au>Wang, Zhen</au><au>Xia, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2019-10</date><risdate>2019</risdate><volume>356</volume><issue>15</issue><spage>8278</spage><epage>8295</epage><pages>8278-8295</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>In this paper, a delayed fractional eco-epidemiological model with incommensurate orders is proposed, and a control strategy of this model is discussed. Firstly, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Secondly, under the influence of the controller, the stability and Hopf bifurcation of the system is discussed, and it is indicated that the stability of the system can be changed by increasing the feedback control delay. In particular, a separate study is carried out on the bifurcation with respect to the extended feedback delay, and the bifurcation point is calculated. At last, to support the theoretical results, some numerical simulations are depicted.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2019.07.028</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7188-5828</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2019-10, Vol.356 (15), p.8278-8295 |
issn | 0016-0032 1879-2693 0016-0032 |
language | eng |
recordid | cdi_proquest_journals_2313059724 |
source | ScienceDirect: Mathematics Backfile; ScienceDirect Freedom Collection |
subjects | Bifurcation theory Computer simulation Control stability Controllers Epidemiology Feedback control Feedback control systems Hopf bifurcation Mathematical models Numerical analysis Systems stability Time lag |
title | Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20bifurcation%20control%20of%20a%20delayed%20fractional-order%20eco-epidemiological%20model%20with%20incommensurate%20orders&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Wang,%20Xinhe&rft.date=2019-10&rft.volume=356&rft.issue=15&rft.spage=8278&rft.epage=8295&rft.pages=8278-8295&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2019.07.028&rft_dat=%3Cproquest_cross%3E2313059724%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2313059724&rft_id=info:pmid/&rfr_iscdi=true |