Loading…

Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders

In this paper, a delayed fractional eco-epidemiological model with incommensurate orders is proposed, and a control strategy of this model is discussed. Firstly, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Secondly, under the inf...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Franklin Institute 2019-10, Vol.356 (15), p.8278-8295
Main Authors: Wang, Xinhe, Wang, Zhen, Xia, Jianwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53
cites cdi_FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53
container_end_page 8295
container_issue 15
container_start_page 8278
container_title Journal of the Franklin Institute
container_volume 356
creator Wang, Xinhe
Wang, Zhen
Xia, Jianwei
description In this paper, a delayed fractional eco-epidemiological model with incommensurate orders is proposed, and a control strategy of this model is discussed. Firstly, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Secondly, under the influence of the controller, the stability and Hopf bifurcation of the system is discussed, and it is indicated that the stability of the system can be changed by increasing the feedback control delay. In particular, a separate study is carried out on the bifurcation with respect to the extended feedback delay, and the bifurcation point is calculated. At last, to support the theoretical results, some numerical simulations are depicted.
doi_str_mv 10.1016/j.jfranklin.2019.07.028
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313059724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003219305502</els_id><sourcerecordid>2313059724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53</originalsourceid><addsrcrecordid>eNqFkE1PxCAQhonRxHX1N0jiuRVKC-3RGL-STTyoZ0JhUGpbVmA1--9lXePVzGEymfedjwehc0pKSii_HMrBBjW_j24uK0K7koiSVO0BWtBWdEXFO3aIFiRLC0JYdYxOYhxyKSghC5Sekurd6NIWq9ng3tlN0Co5P2Pt5xT8iL3FChsY1RYMzqv0rqvGwgcDAYP2Baydgcn50b86rUY8-SzHXy69YTdrP00wx01QCfCPJ56iI6vGCGe_eYlebm-er--L1ePdw_XVqtCsZqnQDbV9x1orLKFVw4wVNW8oZ8A5o3WXw3a9bg0XNWGMg2k7C7blfU8aoxq2RBf7uevgPzYQkxz8JuTbo6wYZaTpRFVnldirdPAxBrByHdykwlZSIneI5SD_EMsdYkmEzIiz82rvhPzEp4Mgo3YwazAugE7SePfvjG9Uw4t4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313059724</pqid></control><display><type>article</type><title>Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders</title><source>ScienceDirect: Mathematics Backfile</source><source>ScienceDirect Freedom Collection</source><creator>Wang, Xinhe ; Wang, Zhen ; Xia, Jianwei</creator><creatorcontrib>Wang, Xinhe ; Wang, Zhen ; Xia, Jianwei</creatorcontrib><description>In this paper, a delayed fractional eco-epidemiological model with incommensurate orders is proposed, and a control strategy of this model is discussed. Firstly, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Secondly, under the influence of the controller, the stability and Hopf bifurcation of the system is discussed, and it is indicated that the stability of the system can be changed by increasing the feedback control delay. In particular, a separate study is carried out on the bifurcation with respect to the extended feedback delay, and the bifurcation point is calculated. At last, to support the theoretical results, some numerical simulations are depicted.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2019.07.028</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Bifurcation theory ; Computer simulation ; Control stability ; Controllers ; Epidemiology ; Feedback control ; Feedback control systems ; Hopf bifurcation ; Mathematical models ; Numerical analysis ; Systems stability ; Time lag</subject><ispartof>Journal of the Franklin Institute, 2019-10, Vol.356 (15), p.8278-8295</ispartof><rights>2019 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53</citedby><cites>FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53</cites><orcidid>0000-0001-7188-5828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016003219305502$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3562,27922,27923,46001</link.rule.ids></links><search><creatorcontrib>Wang, Xinhe</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Xia, Jianwei</creatorcontrib><title>Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders</title><title>Journal of the Franklin Institute</title><description>In this paper, a delayed fractional eco-epidemiological model with incommensurate orders is proposed, and a control strategy of this model is discussed. Firstly, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Secondly, under the influence of the controller, the stability and Hopf bifurcation of the system is discussed, and it is indicated that the stability of the system can be changed by increasing the feedback control delay. In particular, a separate study is carried out on the bifurcation with respect to the extended feedback delay, and the bifurcation point is calculated. At last, to support the theoretical results, some numerical simulations are depicted.</description><subject>Bifurcation theory</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Controllers</subject><subject>Epidemiology</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Hopf bifurcation</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Systems stability</subject><subject>Time lag</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PxCAQhonRxHX1N0jiuRVKC-3RGL-STTyoZ0JhUGpbVmA1--9lXePVzGEymfedjwehc0pKSii_HMrBBjW_j24uK0K7koiSVO0BWtBWdEXFO3aIFiRLC0JYdYxOYhxyKSghC5Sekurd6NIWq9ng3tlN0Co5P2Pt5xT8iL3FChsY1RYMzqv0rqvGwgcDAYP2Baydgcn50b86rUY8-SzHXy69YTdrP00wx01QCfCPJ56iI6vGCGe_eYlebm-er--L1ePdw_XVqtCsZqnQDbV9x1orLKFVw4wVNW8oZ8A5o3WXw3a9bg0XNWGMg2k7C7blfU8aoxq2RBf7uevgPzYQkxz8JuTbo6wYZaTpRFVnldirdPAxBrByHdykwlZSIneI5SD_EMsdYkmEzIiz82rvhPzEp4Mgo3YwazAugE7SePfvjG9Uw4t4</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Wang, Xinhe</creator><creator>Wang, Zhen</creator><creator>Xia, Jianwei</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-7188-5828</orcidid></search><sort><creationdate>201910</creationdate><title>Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders</title><author>Wang, Xinhe ; Wang, Zhen ; Xia, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bifurcation theory</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Controllers</topic><topic>Epidemiology</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Hopf bifurcation</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Systems stability</topic><topic>Time lag</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinhe</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Xia, Jianwei</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinhe</au><au>Wang, Zhen</au><au>Xia, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2019-10</date><risdate>2019</risdate><volume>356</volume><issue>15</issue><spage>8278</spage><epage>8295</epage><pages>8278-8295</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>In this paper, a delayed fractional eco-epidemiological model with incommensurate orders is proposed, and a control strategy of this model is discussed. Firstly, for the system with no controller, the stability and Hopf bifurcation with respect to time delay are investigated. Secondly, under the influence of the controller, the stability and Hopf bifurcation of the system is discussed, and it is indicated that the stability of the system can be changed by increasing the feedback control delay. In particular, a separate study is carried out on the bifurcation with respect to the extended feedback delay, and the bifurcation point is calculated. At last, to support the theoretical results, some numerical simulations are depicted.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2019.07.028</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7188-5828</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2019-10, Vol.356 (15), p.8278-8295
issn 0016-0032
1879-2693
0016-0032
language eng
recordid cdi_proquest_journals_2313059724
source ScienceDirect: Mathematics Backfile; ScienceDirect Freedom Collection
subjects Bifurcation theory
Computer simulation
Control stability
Controllers
Epidemiology
Feedback control
Feedback control systems
Hopf bifurcation
Mathematical models
Numerical analysis
Systems stability
Time lag
title Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A55%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20bifurcation%20control%20of%20a%20delayed%20fractional-order%20eco-epidemiological%20model%20with%20incommensurate%20orders&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Wang,%20Xinhe&rft.date=2019-10&rft.volume=356&rft.issue=15&rft.spage=8278&rft.epage=8295&rft.pages=8278-8295&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2019.07.028&rft_dat=%3Cproquest_cross%3E2313059724%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-c51fb938f7f01253df7465163e663149494f9bc8d6740336ed89fef86bb05da53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2313059724&rft_id=info:pmid/&rfr_iscdi=true