Loading…
Modeling Material Stress Using Integrated Gaussian Markov Random Fields
The equations of a physical constitutive model for material stress within tantalum grains were solved numerically using a tetrahedrally meshed volume. The resulting output included a scalar vonMises stress for each of the more than 94,000 tetrahedra within the finite element discretization. In this...
Saved in:
Published in: | arXiv.org 2019-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Marcy, Peter W Vander Wiel, Scott A Storlie, Curtis B Livescu, Veronica Bronkhorst, Curt A |
description | The equations of a physical constitutive model for material stress within tantalum grains were solved numerically using a tetrahedrally meshed volume. The resulting output included a scalar vonMises stress for each of the more than 94,000 tetrahedra within the finite element discretization. In this paper, we define an intricate statistical model for the spatial field of vonMises stress which uses the given grain geometry in a fundamental way. Our model relates the three-dimensional field to integrals of latent stochastic processes defined on the vertices of the one- and two-dimensional grain boundaries. An intuitive neighborhood structure of said boundary nodes suggested the use of a latent Gaussian Markov random field (GMRF). However, despite the potential for computational gains afforded by GMRFs, the integral nature of our model and the sheer number of data points pose substantial challenges for a full Bayesian analysis. To overcome these problems and encourage efficient exploration of the posterior distribution, a number of techniques are now combined: parallel computing, sparse matrix methods, and a modification of a block update strategy within the sampling routine. In addition, we use an auxiliary variables approach to accommodate the presence of outliers in the data. |
doi_str_mv | 10.48550/arxiv.1911.02629 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2313450708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313450708</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-7c7fd6e7ad1be2c253a65aca2117f3909aba9e61b1165c1d28e5b8a025fc5cfc3</originalsourceid><addsrcrecordid>eNotjVFLwzAUhYMgOOZ-gG8Bn1tzb3qb9lGGm4MNQefzuE3S0VlbTdrhz7cynw6c7-McIe5ApVlBpB44_DTnFEqAVGGO5ZWYodaQFBnijVjEeFJqAgaJ9Eysd73zbdMd5Y4HHxpu5dsQfIzyPf61m27wxzAhJ9c8xthwN5nhoz_LV-5c_ylXjW9dvBXXNbfRL_5zLvarp_3yOdm-rDfLx23ChEVirKld7g07qDxaJM05sWUEMLUuVckVlz6HCiAnCw4LT1XBCqm2ZGur5-L-MvsV-u_Rx-Fw6sfQTY8H1KAzUkYV-hfqc03I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313450708</pqid></control><display><type>article</type><title>Modeling Material Stress Using Integrated Gaussian Markov Random Fields</title><source>ProQuest - Publicly Available Content Database</source><creator>Marcy, Peter W ; Vander Wiel, Scott A ; Storlie, Curtis B ; Livescu, Veronica ; Bronkhorst, Curt A</creator><creatorcontrib>Marcy, Peter W ; Vander Wiel, Scott A ; Storlie, Curtis B ; Livescu, Veronica ; Bronkhorst, Curt A</creatorcontrib><description>The equations of a physical constitutive model for material stress within tantalum grains were solved numerically using a tetrahedrally meshed volume. The resulting output included a scalar vonMises stress for each of the more than 94,000 tetrahedra within the finite element discretization. In this paper, we define an intricate statistical model for the spatial field of vonMises stress which uses the given grain geometry in a fundamental way. Our model relates the three-dimensional field to integrals of latent stochastic processes defined on the vertices of the one- and two-dimensional grain boundaries. An intuitive neighborhood structure of said boundary nodes suggested the use of a latent Gaussian Markov random field (GMRF). However, despite the potential for computational gains afforded by GMRFs, the integral nature of our model and the sheer number of data points pose substantial challenges for a full Bayesian analysis. To overcome these problems and encourage efficient exploration of the posterior distribution, a number of techniques are now combined: parallel computing, sparse matrix methods, and a modification of a block update strategy within the sampling routine. In addition, we use an auxiliary variables approach to accommodate the presence of outliers in the data.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1911.02629</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Bayesian analysis ; Constitutive models ; Data points ; Fields (mathematics) ; Grain boundaries ; Integrals ; Markov analysis ; Outliers (statistics) ; Sparse matrices ; Statistical models ; Stochastic processes ; Tantalum ; Tetrahedra ; Three dimensional models</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2313450708?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Marcy, Peter W</creatorcontrib><creatorcontrib>Vander Wiel, Scott A</creatorcontrib><creatorcontrib>Storlie, Curtis B</creatorcontrib><creatorcontrib>Livescu, Veronica</creatorcontrib><creatorcontrib>Bronkhorst, Curt A</creatorcontrib><title>Modeling Material Stress Using Integrated Gaussian Markov Random Fields</title><title>arXiv.org</title><description>The equations of a physical constitutive model for material stress within tantalum grains were solved numerically using a tetrahedrally meshed volume. The resulting output included a scalar vonMises stress for each of the more than 94,000 tetrahedra within the finite element discretization. In this paper, we define an intricate statistical model for the spatial field of vonMises stress which uses the given grain geometry in a fundamental way. Our model relates the three-dimensional field to integrals of latent stochastic processes defined on the vertices of the one- and two-dimensional grain boundaries. An intuitive neighborhood structure of said boundary nodes suggested the use of a latent Gaussian Markov random field (GMRF). However, despite the potential for computational gains afforded by GMRFs, the integral nature of our model and the sheer number of data points pose substantial challenges for a full Bayesian analysis. To overcome these problems and encourage efficient exploration of the posterior distribution, a number of techniques are now combined: parallel computing, sparse matrix methods, and a modification of a block update strategy within the sampling routine. In addition, we use an auxiliary variables approach to accommodate the presence of outliers in the data.</description><subject>Apexes</subject><subject>Bayesian analysis</subject><subject>Constitutive models</subject><subject>Data points</subject><subject>Fields (mathematics)</subject><subject>Grain boundaries</subject><subject>Integrals</subject><subject>Markov analysis</subject><subject>Outliers (statistics)</subject><subject>Sparse matrices</subject><subject>Statistical models</subject><subject>Stochastic processes</subject><subject>Tantalum</subject><subject>Tetrahedra</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjVFLwzAUhYMgOOZ-gG8Bn1tzb3qb9lGGm4MNQefzuE3S0VlbTdrhz7cynw6c7-McIe5ApVlBpB44_DTnFEqAVGGO5ZWYodaQFBnijVjEeFJqAgaJ9Eysd73zbdMd5Y4HHxpu5dsQfIzyPf61m27wxzAhJ9c8xthwN5nhoz_LV-5c_ylXjW9dvBXXNbfRL_5zLvarp_3yOdm-rDfLx23ChEVirKld7g07qDxaJM05sWUEMLUuVckVlz6HCiAnCw4LT1XBCqm2ZGur5-L-MvsV-u_Rx-Fw6sfQTY8H1KAzUkYV-hfqc03I</recordid><startdate>20191106</startdate><enddate>20191106</enddate><creator>Marcy, Peter W</creator><creator>Vander Wiel, Scott A</creator><creator>Storlie, Curtis B</creator><creator>Livescu, Veronica</creator><creator>Bronkhorst, Curt A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191106</creationdate><title>Modeling Material Stress Using Integrated Gaussian Markov Random Fields</title><author>Marcy, Peter W ; Vander Wiel, Scott A ; Storlie, Curtis B ; Livescu, Veronica ; Bronkhorst, Curt A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-7c7fd6e7ad1be2c253a65aca2117f3909aba9e61b1165c1d28e5b8a025fc5cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apexes</topic><topic>Bayesian analysis</topic><topic>Constitutive models</topic><topic>Data points</topic><topic>Fields (mathematics)</topic><topic>Grain boundaries</topic><topic>Integrals</topic><topic>Markov analysis</topic><topic>Outliers (statistics)</topic><topic>Sparse matrices</topic><topic>Statistical models</topic><topic>Stochastic processes</topic><topic>Tantalum</topic><topic>Tetrahedra</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Marcy, Peter W</creatorcontrib><creatorcontrib>Vander Wiel, Scott A</creatorcontrib><creatorcontrib>Storlie, Curtis B</creatorcontrib><creatorcontrib>Livescu, Veronica</creatorcontrib><creatorcontrib>Bronkhorst, Curt A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcy, Peter W</au><au>Vander Wiel, Scott A</au><au>Storlie, Curtis B</au><au>Livescu, Veronica</au><au>Bronkhorst, Curt A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Material Stress Using Integrated Gaussian Markov Random Fields</atitle><jtitle>arXiv.org</jtitle><date>2019-11-06</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The equations of a physical constitutive model for material stress within tantalum grains were solved numerically using a tetrahedrally meshed volume. The resulting output included a scalar vonMises stress for each of the more than 94,000 tetrahedra within the finite element discretization. In this paper, we define an intricate statistical model for the spatial field of vonMises stress which uses the given grain geometry in a fundamental way. Our model relates the three-dimensional field to integrals of latent stochastic processes defined on the vertices of the one- and two-dimensional grain boundaries. An intuitive neighborhood structure of said boundary nodes suggested the use of a latent Gaussian Markov random field (GMRF). However, despite the potential for computational gains afforded by GMRFs, the integral nature of our model and the sheer number of data points pose substantial challenges for a full Bayesian analysis. To overcome these problems and encourage efficient exploration of the posterior distribution, a number of techniques are now combined: parallel computing, sparse matrix methods, and a modification of a block update strategy within the sampling routine. In addition, we use an auxiliary variables approach to accommodate the presence of outliers in the data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1911.02629</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2313450708 |
source | ProQuest - Publicly Available Content Database |
subjects | Apexes Bayesian analysis Constitutive models Data points Fields (mathematics) Grain boundaries Integrals Markov analysis Outliers (statistics) Sparse matrices Statistical models Stochastic processes Tantalum Tetrahedra Three dimensional models |
title | Modeling Material Stress Using Integrated Gaussian Markov Random Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Material%20Stress%20Using%20Integrated%20Gaussian%20Markov%20Random%20Fields&rft.jtitle=arXiv.org&rft.au=Marcy,%20Peter%20W&rft.date=2019-11-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1911.02629&rft_dat=%3Cproquest%3E2313450708%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-7c7fd6e7ad1be2c253a65aca2117f3909aba9e61b1165c1d28e5b8a025fc5cfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2313450708&rft_id=info:pmid/&rfr_iscdi=true |