Loading…

Analysis of the interaction of thermoacoustic modes with a Green’s function approach

In this paper, we will present a fast prediction tool based on a one-dimensional Green's function approach that can be used to bypass numerically expensive computational fluid dynamics simulations. The Green’s function approach has the advantage of providing a clear picture of the physics behin...

Full description

Saved in:
Bibliographic Details
Published in:International journal of spray and combustion dynamics 2018-12, Vol.10 (4), p.326-336
Main Authors: Bigongiari, Alessandra, Heckl, Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-e7ebbb0dd4af10bf268ed4ceea35e328b526213333752c24c57d9b337c651dfd3
cites cdi_FETCH-LOGICAL-c351t-e7ebbb0dd4af10bf268ed4ceea35e328b526213333752c24c57d9b337c651dfd3
container_end_page 336
container_issue 4
container_start_page 326
container_title International journal of spray and combustion dynamics
container_volume 10
creator Bigongiari, Alessandra
Heckl, Maria
description In this paper, we will present a fast prediction tool based on a one-dimensional Green's function approach that can be used to bypass numerically expensive computational fluid dynamics simulations. The Green’s function approach has the advantage of providing a clear picture of the physics behind the generation and evolution of combustion instabilities. In addition, the method allows us to perform a modal analysis; single acoustic modes can be treated in isolation or in combination with other modes. In this article, we will investigate the role of higher-order modes in determining the stability of the system. We will initially produce the stability maps for the first and second mode separately. Then the time history of the perturbation will be computed, where both the modes are present. The flame will be modelled by a generic Flame Describing Function, i.e. by an amplitude-dependent Flame Transfer Function. The time-history calculations show the evolution of the two modes resulting from an initial perturbation; both transient and limit-cycle oscillations are revealed. Our study represents a first step towards the modelling of nonlinearity and non-normality in combustion processes.
doi_str_mv 10.1177/1756827718809570
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2313787001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1756827718809570</sage_id><sourcerecordid>2313787001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-e7ebbb0dd4af10bf268ed4ceea35e328b526213333752c24c57d9b337c651dfd3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqd49Bjyv5qPZpMdStAoFL-p1ycfERtrdmmSR3vwb_j1_iSlbFATnMjOP994wD6ELSq4olfKaSlErJiVVikyFJEdotIcqxZQ4_pmlPEXnKQVDBFecS8JH6HnW6vUuhYQ7j_MKcGgzRG1z6NoDFDedtl2fcrB40zlI-D3kFdZ4EQHar4_PhH3fDgq93cbCXp2hE6_XCc4PfYyebm8e53fV8mFxP58tK8sFzRVIMMYQ5ybaU2I8qxW4iQXQXABnyghWM8pLScEsm1gh3dSUzdaCOu_4GF0OvuXsWw8pN69dH8tLqWGccqkkIbSwyMCysUspgm-2MWx03DWUNPsAm78BFkk1SJJ-gV_Tf_nfvkRxZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313787001</pqid></control><display><type>article</type><title>Analysis of the interaction of thermoacoustic modes with a Green’s function approach</title><source>Publicly Available Content Database</source><source>SAGE Journals</source><creator>Bigongiari, Alessandra ; Heckl, Maria</creator><creatorcontrib>Bigongiari, Alessandra ; Heckl, Maria</creatorcontrib><description>In this paper, we will present a fast prediction tool based on a one-dimensional Green's function approach that can be used to bypass numerically expensive computational fluid dynamics simulations. The Green’s function approach has the advantage of providing a clear picture of the physics behind the generation and evolution of combustion instabilities. In addition, the method allows us to perform a modal analysis; single acoustic modes can be treated in isolation or in combination with other modes. In this article, we will investigate the role of higher-order modes in determining the stability of the system. We will initially produce the stability maps for the first and second mode separately. Then the time history of the perturbation will be computed, where both the modes are present. The flame will be modelled by a generic Flame Describing Function, i.e. by an amplitude-dependent Flame Transfer Function. The time-history calculations show the evolution of the two modes resulting from an initial perturbation; both transient and limit-cycle oscillations are revealed. Our study represents a first step towards the modelling of nonlinearity and non-normality in combustion processes.</description><identifier>ISSN: 1756-8277</identifier><identifier>EISSN: 1756-8285</identifier><identifier>DOI: 10.1177/1756827718809570</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Combustion stability ; Computational fluid dynamics ; Computer simulation ; Evolution ; Green's functions ; Limit cycle oscillations ; Modal analysis ; Normality ; Perturbation ; Transfer functions</subject><ispartof>International journal of spray and combustion dynamics, 2018-12, Vol.10 (4), p.326-336</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is licensed under the Creative Commons Attribution – Non-Commercial License http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-e7ebbb0dd4af10bf268ed4ceea35e328b526213333752c24c57d9b337c651dfd3</citedby><cites>FETCH-LOGICAL-c351t-e7ebbb0dd4af10bf268ed4ceea35e328b526213333752c24c57d9b337c651dfd3</cites><orcidid>0000-0003-2401-5429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2313787001?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,79364</link.rule.ids></links><search><creatorcontrib>Bigongiari, Alessandra</creatorcontrib><creatorcontrib>Heckl, Maria</creatorcontrib><title>Analysis of the interaction of thermoacoustic modes with a Green’s function approach</title><title>International journal of spray and combustion dynamics</title><description>In this paper, we will present a fast prediction tool based on a one-dimensional Green's function approach that can be used to bypass numerically expensive computational fluid dynamics simulations. The Green’s function approach has the advantage of providing a clear picture of the physics behind the generation and evolution of combustion instabilities. In addition, the method allows us to perform a modal analysis; single acoustic modes can be treated in isolation or in combination with other modes. In this article, we will investigate the role of higher-order modes in determining the stability of the system. We will initially produce the stability maps for the first and second mode separately. Then the time history of the perturbation will be computed, where both the modes are present. The flame will be modelled by a generic Flame Describing Function, i.e. by an amplitude-dependent Flame Transfer Function. The time-history calculations show the evolution of the two modes resulting from an initial perturbation; both transient and limit-cycle oscillations are revealed. Our study represents a first step towards the modelling of nonlinearity and non-normality in combustion processes.</description><subject>Combustion stability</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Evolution</subject><subject>Green's functions</subject><subject>Limit cycle oscillations</subject><subject>Modal analysis</subject><subject>Normality</subject><subject>Perturbation</subject><subject>Transfer functions</subject><issn>1756-8277</issn><issn>1756-8285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>PIMPY</sourceid><recordid>eNp1UE1LAzEQDaJgqd49Bjyv5qPZpMdStAoFL-p1ycfERtrdmmSR3vwb_j1_iSlbFATnMjOP994wD6ELSq4olfKaSlErJiVVikyFJEdotIcqxZQ4_pmlPEXnKQVDBFecS8JH6HnW6vUuhYQ7j_MKcGgzRG1z6NoDFDedtl2fcrB40zlI-D3kFdZ4EQHar4_PhH3fDgq93cbCXp2hE6_XCc4PfYyebm8e53fV8mFxP58tK8sFzRVIMMYQ5ybaU2I8qxW4iQXQXABnyghWM8pLScEsm1gh3dSUzdaCOu_4GF0OvuXsWw8pN69dH8tLqWGccqkkIbSwyMCysUspgm-2MWx03DWUNPsAm78BFkk1SJJ-gV_Tf_nfvkRxZQ</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Bigongiari, Alessandra</creator><creator>Heckl, Maria</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2401-5429</orcidid></search><sort><creationdate>201812</creationdate><title>Analysis of the interaction of thermoacoustic modes with a Green’s function approach</title><author>Bigongiari, Alessandra ; Heckl, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-e7ebbb0dd4af10bf268ed4ceea35e328b526213333752c24c57d9b337c651dfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Combustion stability</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Evolution</topic><topic>Green's functions</topic><topic>Limit cycle oscillations</topic><topic>Modal analysis</topic><topic>Normality</topic><topic>Perturbation</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bigongiari, Alessandra</creatorcontrib><creatorcontrib>Heckl, Maria</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of spray and combustion dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bigongiari, Alessandra</au><au>Heckl, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the interaction of thermoacoustic modes with a Green’s function approach</atitle><jtitle>International journal of spray and combustion dynamics</jtitle><date>2018-12</date><risdate>2018</risdate><volume>10</volume><issue>4</issue><spage>326</spage><epage>336</epage><pages>326-336</pages><issn>1756-8277</issn><eissn>1756-8285</eissn><abstract>In this paper, we will present a fast prediction tool based on a one-dimensional Green's function approach that can be used to bypass numerically expensive computational fluid dynamics simulations. The Green’s function approach has the advantage of providing a clear picture of the physics behind the generation and evolution of combustion instabilities. In addition, the method allows us to perform a modal analysis; single acoustic modes can be treated in isolation or in combination with other modes. In this article, we will investigate the role of higher-order modes in determining the stability of the system. We will initially produce the stability maps for the first and second mode separately. Then the time history of the perturbation will be computed, where both the modes are present. The flame will be modelled by a generic Flame Describing Function, i.e. by an amplitude-dependent Flame Transfer Function. The time-history calculations show the evolution of the two modes resulting from an initial perturbation; both transient and limit-cycle oscillations are revealed. Our study represents a first step towards the modelling of nonlinearity and non-normality in combustion processes.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1756827718809570</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2401-5429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-8277
ispartof International journal of spray and combustion dynamics, 2018-12, Vol.10 (4), p.326-336
issn 1756-8277
1756-8285
language eng
recordid cdi_proquest_journals_2313787001
source Publicly Available Content Database; SAGE Journals
subjects Combustion stability
Computational fluid dynamics
Computer simulation
Evolution
Green's functions
Limit cycle oscillations
Modal analysis
Normality
Perturbation
Transfer functions
title Analysis of the interaction of thermoacoustic modes with a Green’s function approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20interaction%20of%20thermoacoustic%20modes%20with%20a%20Green%E2%80%99s%20function%20approach&rft.jtitle=International%20journal%20of%20spray%20and%20combustion%20dynamics&rft.au=Bigongiari,%20Alessandra&rft.date=2018-12&rft.volume=10&rft.issue=4&rft.spage=326&rft.epage=336&rft.pages=326-336&rft.issn=1756-8277&rft.eissn=1756-8285&rft_id=info:doi/10.1177/1756827718809570&rft_dat=%3Cproquest_cross%3E2313787001%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-e7ebbb0dd4af10bf268ed4ceea35e328b526213333752c24c57d9b337c651dfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2313787001&rft_id=info:pmid/&rft_sage_id=10.1177_1756827718809570&rfr_iscdi=true