Loading…

The Taylor joint spectrum and restriction to hyperinvariant subspaces

It is well known that for a single bounded operator \(A_0\) on a Hilbert \(\mathfrak{H}\), if \(\mathfrak{M}\subset \mathfrak{H}\) is hyperinvariant for \(A_0\), then the spectrum of \(A_0|_{\mathfrak{M}}\) is contained in the spectrum of \(A_0\). In this note, we modify an example of Taylor to prov...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-11
Main Author: Timko, Edward J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Timko, Edward J
description It is well known that for a single bounded operator \(A_0\) on a Hilbert \(\mathfrak{H}\), if \(\mathfrak{M}\subset \mathfrak{H}\) is hyperinvariant for \(A_0\), then the spectrum of \(A_0|_{\mathfrak{M}}\) is contained in the spectrum of \(A_0\). In this note, we modify an example of Taylor to prove the following. There exist a quadruple \(A=(A_1,A_2,A_3,A_4)\) of commuting bounded Hilbert space operators and a hyperinvariant subspace \(\mathfrak{X}_1\) for \(A\) such that the Taylor joint spectrum of \(A\) restricted to \(\mathfrak{X}_1\) is a not a subset of the Taylor joint spectrum of \(A\).
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2313805289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2313805289</sourcerecordid><originalsourceid>FETCH-proquest_journals_23138052893</originalsourceid><addsrcrecordid>eNqNjEEKwjAQAIMgWLR_WPBcSDdW61kqPqB3iTXSlJrE3UTo763gAzzNYYZZiAyVKot6h7gSOfMgpcT9AatKZaJpewOtnkZPMHjrInAwXaT0BO3uQIYj2S5a7yB66KdgyLq3Jqu_abpx0J3hjVg-9Mgm_3EttuemPV2KQP6V5sd18IncrK6oSlXLCuuj-q_6AOJmO9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313805289</pqid></control><display><type>article</type><title>The Taylor joint spectrum and restriction to hyperinvariant subspaces</title><source>Publicly Available Content Database</source><creator>Timko, Edward J</creator><creatorcontrib>Timko, Edward J</creatorcontrib><description>It is well known that for a single bounded operator \(A_0\) on a Hilbert \(\mathfrak{H}\), if \(\mathfrak{M}\subset \mathfrak{H}\) is hyperinvariant for \(A_0\), then the spectrum of \(A_0|_{\mathfrak{M}}\) is contained in the spectrum of \(A_0\). In this note, we modify an example of Taylor to prove the following. There exist a quadruple \(A=(A_1,A_2,A_3,A_4)\) of commuting bounded Hilbert space operators and a hyperinvariant subspace \(\mathfrak{X}_1\) for \(A\) such that the Taylor joint spectrum of \(A\) restricted to \(\mathfrak{X}_1\) is a not a subset of the Taylor joint spectrum of \(A\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Hilbert space ; Subspaces</subject><ispartof>arXiv.org, 2019-11</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2313805289?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Timko, Edward J</creatorcontrib><title>The Taylor joint spectrum and restriction to hyperinvariant subspaces</title><title>arXiv.org</title><description>It is well known that for a single bounded operator \(A_0\) on a Hilbert \(\mathfrak{H}\), if \(\mathfrak{M}\subset \mathfrak{H}\) is hyperinvariant for \(A_0\), then the spectrum of \(A_0|_{\mathfrak{M}}\) is contained in the spectrum of \(A_0\). In this note, we modify an example of Taylor to prove the following. There exist a quadruple \(A=(A_1,A_2,A_3,A_4)\) of commuting bounded Hilbert space operators and a hyperinvariant subspace \(\mathfrak{X}_1\) for \(A\) such that the Taylor joint spectrum of \(A\) restricted to \(\mathfrak{X}_1\) is a not a subset of the Taylor joint spectrum of \(A\).</description><subject>Hilbert space</subject><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEEKwjAQAIMgWLR_WPBcSDdW61kqPqB3iTXSlJrE3UTo763gAzzNYYZZiAyVKot6h7gSOfMgpcT9AatKZaJpewOtnkZPMHjrInAwXaT0BO3uQIYj2S5a7yB66KdgyLq3Jqu_abpx0J3hjVg-9Mgm_3EttuemPV2KQP6V5sd18IncrK6oSlXLCuuj-q_6AOJmO9g</recordid><startdate>20191108</startdate><enddate>20191108</enddate><creator>Timko, Edward J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20191108</creationdate><title>The Taylor joint spectrum and restriction to hyperinvariant subspaces</title><author>Timko, Edward J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23138052893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Hilbert space</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Timko, Edward J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timko, Edward J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Taylor joint spectrum and restriction to hyperinvariant subspaces</atitle><jtitle>arXiv.org</jtitle><date>2019-11-08</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>It is well known that for a single bounded operator \(A_0\) on a Hilbert \(\mathfrak{H}\), if \(\mathfrak{M}\subset \mathfrak{H}\) is hyperinvariant for \(A_0\), then the spectrum of \(A_0|_{\mathfrak{M}}\) is contained in the spectrum of \(A_0\). In this note, we modify an example of Taylor to prove the following. There exist a quadruple \(A=(A_1,A_2,A_3,A_4)\) of commuting bounded Hilbert space operators and a hyperinvariant subspace \(\mathfrak{X}_1\) for \(A\) such that the Taylor joint spectrum of \(A\) restricted to \(\mathfrak{X}_1\) is a not a subset of the Taylor joint spectrum of \(A\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2313805289
source Publicly Available Content Database
subjects Hilbert space
Subspaces
title The Taylor joint spectrum and restriction to hyperinvariant subspaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Taylor%20joint%20spectrum%20and%20restriction%20to%20hyperinvariant%20subspaces&rft.jtitle=arXiv.org&rft.au=Timko,%20Edward%20J&rft.date=2019-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2313805289%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23138052893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2313805289&rft_id=info:pmid/&rfr_iscdi=true