Loading…

Aluminium phosphide-induced testicular toxicity through oxidative stress in Wistar rats: Ameliorative role of hesperidin

The present study was designed to investigate aluminium phosphide (ALP)-induced testicular toxicity, including its effects on sperm parameters and histological alterations in Wistar rats, and the possible protective role of hesperidin (HSD). Oral administration of ALP at 1.15 mg/kg body weight (1/10...

Full description

Saved in:
Bibliographic Details
Published in:Toxicology research and application 2018-01, Vol.2
Main Authors: Afolabi, Olusegun Kayode, Wusu, Adedoja Dorcas, Ugbaja, Regina, Fatoki, John Olabode
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study was designed to investigate aluminium phosphide (ALP)-induced testicular toxicity, including its effects on sperm parameters and histological alterations in Wistar rats, and the possible protective role of hesperidin (HSD). Oral administration of ALP at 1.15 mg/kg body weight (1/10 LD50) for 30 days resulted in a significant increase in testicular malondialdehyde, lipid hydroperoxides, and oxidized protein levels. These indicators of oxidative stress were accompanied by decreased activity of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase, followed by a drastic reduction in the non-enzymatic antioxidant indices of glutathione and total antioxidant capacity when compared to control. Furthermore, ALP treatment produced a marked reduction in sperm count, motility and viability while increasing abnormal sperm morphology and adverse histopathological changes in testis. Co-administration with HSD significantly ameliorated ALP-induced testicular damage by suppressing oxidative stress indices and enhancing antioxidant status while also improving the sperm parameters and histological alterations in ALP-treated rats. The results of the present study indicated that testicular toxic effects of ALP are due to oxidative imbalance and that HSD could be a potential therapeutic agent against ALP-induced testicular damage.
ISSN:2397-8473
2397-8473
DOI:10.1177/2397847318812794