Loading…
Nonuniform functional group distribution of carbon nanotubes studied by energy dispersive X-ray spectrometry imaging in SEM
Functionalization is a key technique to improving the dispersibility of carbon nanotubes (CNTs) in solvents and polymer matrices for producing versatile CNT-based materials. Therefore, a robust and efficient characterization method is required to confirm that the functionalization on the CNT surface...
Saved in:
Published in: | Nanoscale 2019-11, Vol.11 (44), p.21487-21492 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Functionalization is a key technique to improving the dispersibility of carbon nanotubes (CNTs) in solvents and polymer matrices for producing versatile CNT-based materials. Therefore, a robust and efficient characterization method is required to confirm that the functionalization on the CNT surface is spatially uniform. Although several imaging techniques for transmission electron microscopes can characterize the spatial localization of elements chemically bound to an isolated CNT surface, they are unsuitable for examinations on a practical scale because of their limited scanning area. Here, we present high spatially resolved energy dispersive X-ray spectrometry (EDS) imaging of functionalized single-walled CNTs (SWCNTs) in scanning electron microscopy (SEM). Highly sensitive EDS detection and drift-free operation enables our technique to image the light elements of SWCNTs with sufficient spatial resolution ( |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c9nr07619k |