Loading…
An Innovative Adaptive Automated Complex for Protection Against Out-of-Step Conditions in a Power Plant
An analysis of the influence of changes in the power industry of Russia as well as throughout the world on the risk of out-of-step conditions accompanied by a qualitative assessment of their negative consequences is presented. The problem of preventing and eliminating out-of-step conditions is great...
Saved in:
Published in: | Power technology and engineering 2019, Vol.53 (2), p.240-247 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An analysis of the influence of changes in the power industry of Russia as well as throughout the world on the risk of out-of-step conditions accompanied by a qualitative assessment of their negative consequences is presented. The problem of preventing and eliminating out-of-step conditions is greatly complicated today because of large-scale construction and commissioning of distributed electrical generation plants along with the use of modern small-scale generating plants and the development of large industrial plants with their own internal sources of electrical energy. Features in the use of automated devices for eliminating out-of-step conditions under these new conditions are considered. The feasibility of creating an innovative adaptive complex to protect against out-of-step conditions at power engineering plants is evaluated. The basic principles in the construction of an automatic engine for adaptive out-of-step protection with the use of synchronized vector measurement algorithms are presented. The structural and functional designs of an adaptive out-of-step protection complex are presented. Recommendations for the use of an adaptive automatic complex for protection against out-of-step conditions to increase the operating reliability of power plants are presented. |
---|---|
ISSN: | 1570-145X 1570-1468 |
DOI: | 10.1007/s10749-019-01066-0 |